RTX3080/RTX3090驱动安装CUDA11.1+CUDNN8.0.4.30+pytorch源码编译

一、nvidia官网下载nvidia-driver455.23以上,cuda11.1,cudnn-v8.0.4.30

确保nvidia-driver、cuda11.1、cudnn8.0.4.30安装成功

  • NVIDIA-Linux-x86_64-455.23.04.run
  • cuda_11.1.0_455.23.05_linux.run
  • cudnn-11.1-linux-x64-v8.0.4.30.tgz/8.0.5.39
  • 上述文件百度网盘下载链接nvidia-cuda-cudnn 密码: paat,nvidia-driver本人已经更新到455.45.01,cudnn:8.0.5.39
    在这里插入图片描述
    在这里插入图片描述

二、pytorch+torchvision源码编译

  • conda create -n pytorch python=3.7

  • pip install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses

  • git clone --recursive https://github.com/pytorch/pytorch
    cd pytorch
    git submodule sync
    git submodule update --init --recursive
    
  • export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
    python setup.py install
    
  • 成功之后重启终端

    python
    >>> import torch
    >>> torch.__version__
    '1.8.0a0+3d421b3'
    >>> torch.cuda.is_available()
    True
    
    
  • git clone --recursive https://github.com/pytorch/vision.git

  • cd vision/
    python setup.py install
    
  • 重启终端

  • >>> import torchvision
    >>> torchvision.__version__
    '0.8.0a0+a9c78f1'
    >>> 
    

三、tensorflow安装

  • pip install tf-nightly-gpu
  • >>> tf.__version__ '2.4.0-dev20201014'
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值