使用faster rcnn训练imageNet上的部分数据集

本文介绍了如何使用Faster R-CNN在Ubuntu 14.04上训练ImageNet中的bike、motorbike、car、bus、train等类别数据。首先,详细讲述了如何将ImageNet的XML注解转换为PASCAL VOC格式的TXT和XML文件,包括MATLAB代码示例。接着,提到了数据集的划分以及如何创建ImageSets文件夹中的txt文件。最后,指出了训练前的准备工作,如配置py-faster-rcnn,并预告了后续的训练过程。
摘要由CSDN通过智能技术生成

最近在做毕业设计,需要用到faster rcnn,训练数据使用的是我自己下载的imageNet里的部分数据,主要用到了其中的bike,motorbike,car,bus,train等交通工具。由于imageNet自带了annotation,只是格式和pascal voc不一样,所以还需要转化格式。目前我正在使用imageNet中的ship数据集来进行一个二分类的检测和识别,即background和ship。等这个实验成功之后再进行其他类别的数据转换并进行多类的训练。本文主要记录在进行这个实验时候自己所做的一些工作和查阅资料所获得的帮助,相关参考链接也会在文中贴出来。目前网络还在训练中,结果未知,先将已做的一些工作记录,以供以后自己和大家参考,后续再更新。

我的开发环境是Ubuntu14.04,caffe是必须先要配置好的,这里就不再赘述,网上很多教程。进行该实验之前需要先配置py-faster-rcnn工程,具体参考原作者的github项目(https://github.com/rbgirshick/py-faster-rcnn),写得很清楚,另外该算法还有一个matlab版本(https://github.com/ShaoqingRen/faster_rcnn),要想直接看中文可以参考这一篇博客(http://blog.csdn.net/samylee/article/details/51086153)

运行成功demo.py之后,我们还需要做的是下载pascal voc的数据集,对它进行训练。在项目的github网站也给出了训练的方法,这一步个人感觉必须得做,因为我们后续训练自己的imageNet数据的时候也是模仿pascal voc2007的数据集的格式来的。具体步骤参考原作者的github项目(https://github.com/rbgirshick/py-faster-rcnn),或者博客(http://blog.csdn.net/samylee/article/details/51099508),个人感觉最好看原作者的比较好,道理很简单,谁做的肯定就是谁最清楚怎么回事。

经过以上的参考,配置好py-faster-rcnn并在pascal voc 2007数据集上训练成功应该不成问题。下面讲述如何利用imageNet的某一类数据进行训练。

=======================================我是华丽丽的分割线=================

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值