【yolov5】改进系列——特征图可视化 六行代码实现:特征图提取与特征图可视化,可以实现分类网络的特征图可视化最近忙论文,想在yolov5上面做一些改进,看源码看了一段时间,动手改改代码做一些改进,所以做个一系列改进的记录。六行代码实现:特征图提取与特征图可视化,可以实现分类网络得特征图可视化。
【CAM】CAM(Class Activation Mapping)——可视化CNN的特征定位 这里没有对CAM技术的理论进行详细解释,更推荐看原论文。代码见:https://github.com/capsule2077/CAM-Visualization
【Pytorch】六行代码实现:特征图提取与特征图可视化 当时是利用实现的,但是有很大缺陷,只能获取到一级的子模块的特征图输出,无法获取内部二级子模块的输出。今天补充另一种Pytorch官方实现好的特征提取方式,非常好用!
【小知识】argparse --- 命令行选项、参数和子命令解析器详解 argparse模块提供了非常方便的命令行参数解析功能,能够大大简化命令行程序的开发。现在的大型项目中都会运用argparse来管理项目中涉及的参数,在使用命令行时更好地定义模型参数。搜索得到的参数解释都不是很清楚所以做个总结。argparse定义四个步骤:1.导入argparse包 ——import argparse2.创建一个命令行解析器对象 ——创建 ArgumentParser() 对象3.给解析器添加命令行参数 ——调用add_argument() 方法添加参数。
【FCOS】Anchor-Free:FCOS论文总结及一些细节 一般来说,目标检测模型可以分为two-stage和one-stage,也可以分为和,还有现在比较流行的Transformer类的模型,比如DETR。two-stage模型:RCNN、Fast RCNN、Faster RCNN、Mask RCNN等;one-stage模型:YOLO系列、SSD、RetinaNet等;模型:Faster RCNN、SSD、YOLO V2及后续系列等;模型:YOLO V1、FCOS、CornerNet、CenterNet等;Transformer类。
【代码实验】CNN实验——利用Imagenet子集训练分类网络(AlexNet/ResNet) Imagenet是计算机视觉的经典分类比赛,但是Imagenet数据集本身太大了,我们穷学生没有这么大的算力,2016年google DeepMind团队从Imagnet数据集中抽取的一小部分(大小约3GB)制作了Mini-Imagenet数据集(也就是Imagenet的子集),共有100个类别,每个类别都有600张图片,共60000张图片。这个大小的数据集是可以训练得动的。
【DETR】DETR预测/推理代码 说实话,我觉得有的博主做的不太对。刚刚刷到用DETR来进行预训练自己的数据,结果通篇没写清楚是如何训练自己的数据集的,文章结尾看到很多同学没有找到DETR的预测代码,这个博主把自己的代码放上来不就行了吗,非要私聊联系他,结果也不知道有没有回,看到这个真的很无语,写个博客能帮到别人不是很有意义的事吗?这里我分享一下官方写的DETR的训练代码,其实就是github上DETR官方写的一个Jupyter notebook,可能需要梯子才能访问,这里我贴出来。