网络分析工具EasyGraph使用笔记:结构洞经典指标的计算

本文介绍了复旦大学网络大数据实验室的EasyGraph工具,它支持结构洞经典指标的计算,包括有效大小、效率、约束和层级。通过Python库和pip安装,展示了如何使用EasyGraph对KarateClub数据集进行分析,揭示了这些指标与结构洞的紧密关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

EasyGraph是复旦大学网络大数据实验室开发的一款基于Python语言的网络分析开源工具箱。它包含较为全面的结构洞占据者检测方法的开源库,同时覆盖了网络嵌入和其他一些传统的网络分析方法。EasyGraph支持多种网络数据类型,具有良好的兼容性。此外,它利用混合编程和并行计算提高了大多数经典网络分析算法的运行效率。

本文将介绍使用EasyGraph对结构洞经典指标有效大小(effective size)、效率(efficiency)、约束(constraint)和层级(Hierarchy)进行测量的流程
EasyGraph源代码
快速安装:pip install Python-EasyGraph

有效大小(effective size)

effective size源代码
当某个节点的联系人相互连接,它的自我中心网络(以某个节点为中心的一级网络)就具有冗余性。节点的自我网络的有效大小就是它的关系中的非冗余部分的度量
e ( u ) = ∑ v ∈ N ( u ) ∖ { u } ( 1 − ∑ w ∈ N ( v ) p u w m v w ) e(u) = \sum_{v \in N(u) \setminus \{u\}} \left(1 - \sum_{w \in N(v)} p_{uw} m_{vw}\right) e(u)=vN(u){ u} 1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值