背景
EasyGraph是复旦大学网络大数据实验室开发的一款基于Python语言的网络分析开源工具箱。它包含较为全面的结构洞占据者检测方法的开源库,同时覆盖了网络嵌入和其他一些传统的网络分析方法。EasyGraph支持多种网络数据类型,具有良好的兼容性。此外,它利用混合编程和并行计算提高了大多数经典网络分析算法的运行效率。
本文将介绍使用EasyGraph对结构洞经典指标有效大小(effective size)、效率(efficiency)、约束(constraint)和层级(Hierarchy)进行测量的流程
EasyGraph源代码
快速安装:pip install Python-EasyGraph
有效大小(effective size)
effective size源代码
当某个节点的联系人相互连接,它的自我中心网络(以某个节点为中心的一级网络)就具有冗余性。节点的自我网络的有效大小就是它的关系中的非冗余部分的度量
e ( u ) = ∑ v ∈ N ( u ) ∖ { u } ( 1 − ∑ w ∈ N ( v ) p u w m v w ) e(u) = \sum_{v \in N(u) \setminus \{u\}} \left(1 - \sum_{w \in N(v)} p_{uw} m_{vw}\right) e(u)=v∈N(u)∖{
u}∑
1−