算法与数据结构-分治算法


什么是分治算法

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归的定义。关于分治和递归的区别,分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

  • 分解:将原问题分解成一系列子问题;
  • 解决:递归地求解各个子问题,若子问题足够小,则直接求解;
  • 合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般需要满足下面这几个条件:

  • 原问题与分解成的小问题具有相同的模式;
  • 原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等我们讲到动态规划的时候,会详细对比这两种算法;
  • 具有分解终止条件,也就是说,当问题足够小时,可以直接求解;
  • 可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

分治算法应用举例分析

理解分治算法的原理并不难,但是要想灵活应用并不容易。所以,接下来,我会带你用分治算法解决我们在讲排序的时候涉及的一个问题,加深你对分治算法的理解。

还记得我们在排序算法里讲的数据的有序度、逆序度的概念吗?我当时讲到,我们用有序度来表示一组数据的有序程度,用逆序度表示一组数据的无序程度。

假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。

在这里插入图片描述
我现在的问题是,如何编程求出一组数据的有序对个数或者逆序对个数呢?因为有序对个数和逆序对个数的求解方式是类似的,所以你可以只思考逆序对个数的求解方法。

最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。我们把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是 O(n^2)。那有没有更加高效的处理方法呢?

我们用分治算法来试试。我们套用分治的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。

我们前面讲过,使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?

这里就要借助归并排序算法了。你可以先试着想想,如何借助归并排序算法来解决呢?

归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
在这里插入图片描述

private int num = 0; // 全局变量或者成员变量
 
public int count(int[] a, int n) {
  num = 0;
  mergeSortCounting(a, 0, n-1);
  return num;
}
 
private void mergeSortCounting(int[] a, int p, int r) {
  if (p >= r) return;
  int q = (p+r)/2;
  mergeSortCounting(a, p, q);
  mergeSortCounting(a, q+1, r);
  merge(a, p, q, r);
}
 
private void merge(int[] a, int p, int q, int r) {
  int i = p, j = q+1, k = 0;
  int[] tmp = new int[r-p+1];
  while (i<=q && j<=r) {
    if (a[i] <= a[j]) {
      tmp[k++] = a[i++];
    } else {
      num += (q-i+1); // 统计 p-q 之间,比 a[j] 大的元素个数
      tmp[k++] = a[j++];
    }
  }
  while (i <= q) { // 处理剩下的
    tmp[k++] = a[i++];
  }
  while (j <= r) { // 处理剩下的
    tmp[k++] = a[j++];
  }
  for (i = 0; i <= r-p; ++i) { // 从 tmp 拷贝回 a
    a[p+i] = tmp[i];
  }
}

有很多同学经常说,某某算法思想如此巧妙,我是怎么也想不到的。实际上,确实是的。有些算法确实非常巧妙,并不是每个人短时间都能想到的。比如这个问题,并不是每个人都能想到可以借助归并排序算法来解决,不夸张地说,如果之前没接触过,绝大部分人都想不到。但是,如果我告诉你可以借助归并排序算法来解决,那你就应该要想到如何改造归并排序,来求解这个问题了,只要你能做到这一点,我觉得就很棒了。

关于分治算法,我这还有两道比较经典的问题,你可以自己练习一下。

  • 二维平面上有 n 个点,如何快速计算出两个距离最近的点对?
  • 有两个 nn 的矩阵 A,B,如何快速求解两个矩阵的乘积 C=AB?

分治思想在海量数据处理中的应用

分治算法思想的应用是非常广泛的,并不仅限于指导编程和算法设计。它还经常用在海量数据处理的场景中。我们前面讲的数据结构和算法,大部分都是基于内存存储和单机处理。但是,如果要处理的数据量非常大,没法一次性放到内存中,这个时候,这些数据结构和算法就无法工作了。

比如,给 10GB 的订单文件按照金额排序这样一个需求,看似是一个简单的排序问题,但是因为数据量大,有 10GB,而我们的机器的内存可能只有 2、3GB 这样子,无法一次性加载到内存,也就无法通过单纯地使用快排、归并等基础算法来解决了。

要解决这种数据量大到内存装不下的问题,我们就可以利用分治的思想。我们可以将海量的数据集合根据某种方法,划分为几个小的数据集合,每个小的数据集合单独加载到内存来解决,然后再将小数据集合合并成大数据集合。实际上,利用这种分治的处理思路,不仅仅能克服内存的限制,还能利用多线程或者多机处理,加快处理的速度。

比如刚刚举的那个例子,给 10GB 的订单排序,我们就可以先扫描一遍订单,根据订单的金额,将 10GB 的文件划分为几个金额区间。比如订单金额为 1 到 100 元的放到一个小文件,101 到 200 之间的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的 10GB 订单数据了。

如果订单数据存储在类似 GFS 这样的分布式系统上,当 10GB 的订单被划分成多个小文件的时候,每个文件可以并行加载到多台机器上处理,最后再将结果合并在一起,这样并行处理的速度也加快了很多。不过,这里有一个点要注意,就是数据的存储与计算所在的机器是同一个或者在网络中靠的很近(比如一个局域网内,数据存取速度很快),否则就会因为数据访问的速度,导致整个处理过程不但不会变快,反而有可能变慢。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值