Tensorflow2.0 笔记-1

这篇博客详细介绍了在TensorFlow2.0中如何生成张量,包括从numpy数据类型转换、创建不同类型的常量张量,以及随机数的生成。此外,还探讨了常用函数的应用,如四则运算、矩阵相乘、张量切分,以及梯度计算、one-hot编码、softmax函数和参数更新等操作。
摘要由CSDN通过智能技术生成

一、张量生成

创建一个张量

  • List item
# tf.constant(张量内容,dtype=数据类型(可选))
import tensorflow as tf 
a = tf.constant([1,5],dtype=tf.int64)
print(a)
根据逗号隔开的数字,代表是几维的张量
  • 将numpy的数据类型转换为Tensor数据类型

     tf.convert_to_tensor(数据名,dtype=数据类型(可选))
    
  • 创建全为0的张量

     tf.zeros(维度)
     a=tf.zeros([2,3])
    
  • 创建全为1的张量

     tf.ones(维度)
     b=tf.ones([4])
    
  • 创建全为指定数值的张量

     tf.fill([2,2],9)
    

维度:一维 直接写一个数字;
二维: 【行,列】;
三维:【a,b,c,d】

  • 生成正态分布的随机数,默认均值为0,标准差为1
# tf.ranodm.normal(维数,mean=均值,stddev=标准差)
# 生成的这些随机数都负荷以0.5为均值,1为标准差
d = tf.random.normal([2,2],mean=0.5,stddev=1)
print(d)
  • 生成阶段式正态分布的随机数
tf.ranodm.truncated_normal(维数,mean=均值,stddev=标准差)
  • 生成均匀分布的随机数
 tf.ranodm.uniform(维数,minval最小值,maxval=最大值)

二、常用函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四则运算

a = tf.ones([1, 3])
b = tf.fill([1, 3], 3.)
print("a:", a)
print("b:", b)
print("a+b:", tf.add(a, b))
print("a-b:", tf.subtract(a, b))
print("a*b:", tf.multiply(a, b))
print("b/a:", tf.divide(b, a))
# 输出
a: tf.Tensor([[1. 1. 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值