一、张量生成
创建一个张量
- List item
# tf.constant(张量内容,dtype=数据类型(可选))
import tensorflow as tf
a = tf.constant([1,5],dtype=tf.int64)
print(a)
根据逗号隔开的数字,代表是几维的张量
-
将numpy的数据类型转换为Tensor数据类型
tf.convert_to_tensor(数据名,dtype=数据类型(可选))
-
创建全为0的张量
tf.zeros(维度) a=tf.zeros([2,3])
-
创建全为1的张量
tf.ones(维度) b=tf.ones([4])
-
创建全为指定数值的张量
tf.fill([2,2],9)
维度:一维 直接写一个数字;
二维: 【行,列】;
三维:【a,b,c,d】
- 生成正态分布的随机数,默认均值为0,标准差为1
# tf.ranodm.normal(维数,mean=均值,stddev=标准差)
# 生成的这些随机数都负荷以0.5为均值,1为标准差
d = tf.random.normal([2,2],mean=0.5,stddev=1)
print(d)
- 生成阶段式正态分布的随机数
tf.ranodm.truncated_normal(维数,mean=均值,stddev=标准差)
- 生成均匀分布的随机数
tf.ranodm.uniform(维数,minval最小值,maxval=最大值)
二、常用函数
四则运算
a = tf.ones([1, 3])
b = tf.fill([1, 3], 3.)
print("a:", a)
print("b:", b)
print("a+b:", tf.add(a, b))
print("a-b:", tf.subtract(a, b))
print("a*b:", tf.multiply(a, b))
print("b/a:", tf.divide(b, a))
# 输出
a: tf.Tensor([[1. 1. 1