1. 函数
在Python中,函数也是对象,可以从另一个函数中返回出来而去构建高阶函数,比如:参数是函数,返回值是函数。
函数的定义
注意:冒号,缩进,return
def functionname(parameters):
"函数_文档字符串"
function_suite
return [expression]
函数文档
def MyFirstFunction(name):
"函数定义过程中name是形参"
# 因为Ta只是一个形式,表示占据一个参数位置
print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))
MyFirstFunction('老马的程序人生')
# 传递进来的老马的程序人生叫做实参,因为Ta是具体的参数值!
print(MyFirstFunction.__doc__)
# 函数定义过程中name是形参
help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
# 函数定义过程中name是形参
函数参数
- 位置参数:在调用函数时,参数位置要固定。
def functionname(arg1):
"函数_文档字符串"
function_suite
return [expression]
- 默认参数:调用函数时,默认参数的值如果没有传入,则被认为是默认值。默认参数一定要放在位置参数后面,不然程序会报错。
def functionname(arg1, arg2=v):
"函数_文档字符串"
function_suite
return [expression]
Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
- 可变参数:传入参数数量可变,
*args
可以是任意个参数,自动组成元组(加 * 的参数会存储所有未命名的变量参数)。
def printinfo(arg1, *args):
print(arg1)
for var in args:
print(var)
printinfo(10) # 10
printinfo(70, 60, 50)
# 70
# 60
# 50
- 关键字参数:带两个 * ,可以是任意个参数,键值形式自动组成字典。
def printinfo(arg1, *args, **kwargs):
print(arg1)
print(args)
print(kwargs)
printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}
- 命名关键字参数
星号 * ,nkw 为命名关键字参数,用户想要输入的关键字参数,定义方式是在 nkw 前面加个分隔符 *。调用时,nkw 参数名不能忽略。
def printinfo(arg1, *, nkw, **kwargs):
print(arg1)
print(nkw)
print(kwargs)
printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}
printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
- 参数组合:上面5种参数可以组合使用,但是要注意参数定义的顺序,必须是:位置参数、默认参数、可变参数和关键字参数;位置参数、默认参数、命名关键字参数和关键字参数。
其他
- 函数返回值
- 变量作用域:局部变量(函数内定义),全局变量(函数外定义)。当内部作用域想修改外部作用域的变量时,就要用到 global 和 nonlocal 关键字了。
num = 1
def fun1():
global num # 需要使用 global 关键字声明
print(num) # 1
num = 123
print(num) # 123
fun1()
print(num) # 123
- 内嵌函数
def outer():
print('outer函数在这被调用')
def inner():
print('inner函数在这被调用')
inner() # 该函数只能在outer函数内部被调用
outer()
# outer函数在这被调用
# inner函数在这被调用
- 闭包
函数式编程。如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。闭包的 返回值 一般是 函数。
闭包在外部(全局范围内)也可以直接调用。
def funX(x):
def funY(y):
return x * y
return funY
i = funX(8)
print(type(i)) # <class 'function'>
print(i(5)) # 40
如果要修改闭包作用域中的变量则需要 nonlocal 关键字。
def outer():
num = 10
def inner():
nonlocal num # nonlocal关键字声明
num = 100
print(num)
inner()
print(num)
outer()
# 100
# 100
- 递归:在函数内部调用它本身。
def recur_fibo(n):
if n <= 1:
return n
return recur_fibo(n - 1) + recur_fibo(n - 2)
lst = list()
for k in range(11):
lst.append(recur_fibo(k))
print(lst)
# [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
设置递归的层数,Python默认递归层数为 100。
import sys
sys.setrecursionlimit(1000)
2. Lambda 表达式
匿名函数的定义
使用 lambda 关键字创建,没有函数名。结构:lambda argument_list: expression
,lambda argument_list 参数类型和 def 定义的函数参数类型相同。expression 本身结果就是返回值。
匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
函数式编程是指代码中每一块都是不可变的。对于相同的输入,总会有相同的输出,没有任何副作用。即对于输入的参数没有影响。
匿名函数 常常应用于函数式编程的高阶函数中,主要有两种形式:参数是函数 (filter, map);返回值是函数 (closure)。
filter(function, iterable)
过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。
odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist)) # [1, 3, 5, 7, 9]
map(function, *iterables)
根据提供的函数对指定序列做映射。
m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))
# [1, 4, 9, 16, 25]
m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))
# [3, 7, 11, 15, 19]
- 自定义高阶函数
def apply_to_list(fun, some_list):
return fun(some_list)
lst = [1, 2, 3, 4, 5]
print(apply_to_list(sum, lst))
# 15
print(apply_to_list(len, lst))
# 5
print(apply_to_list(lambda x: sum(x) / len(x), lst))
# 3.0
3. 练习
- 怎么给函数编写⽂档?
在函数体内直接编写字符串。
print(function.doc)
help(function) - 怎么给函数参数和返回值注解?
举例说明:在函数对应形参后面冒号说明类型,在def的括号后面箭头说明返回值类型。
def func(x: int, y: int) -> int:
- 闭包中,怎么对数字、字符串、元组等不可变元素更新。
需要使用 nonlocal 关键字。 - 分别根据每一行的首元素和尾元素大小对二维列表 a = [[6, 5], [3, 7], [2, 8]] 排序。(利用lambda表达式)
a = [[6, 5], [3, 7], [2, 8]]
print(a)
a = sorted(a, key=lambda x: x[0], reverse=False)
print(a)
a = sorted(a, key=lambda x: x[1], reverse=False)
print(a)
# [[6, 5], [3, 7], [2, 8]]
# [[2, 8], [3, 7], [6, 5]]
# [[6, 5], [3, 7], [2, 8]]
- 利用python解决汉诺塔问题?有a、b、c三根柱子,在a柱子上从下往上按照大小顺序摞着64片圆盘,把圆盘从下面开始按大小顺序重新摆放在c柱子上,尝试用函数来模拟解决的过程。(提示:将问题简化为已经成功地将a柱上面的63个盘子移到了b柱)。
# 递归
def move(n,a,b,c):
if n == 1:
print(a, "->", c)
else:
move(n-1, a, c, b)
move(1, a, b, c)
move(n-1, b, a, c)
move(64, 'a', 'b', 'c')