最近需要实现一个功能,查找车辆附近的加油站,如果车和加油站距离在200米以内,则查找成功。
加油站数量肯定不小,能否缩小查找范围,否则以遍历形式,效率肯定高不了。
Geohash算法就是将经纬度编码,将二维变一维,给地址位置分区的一种算法。
经纬度常识
- 经线是纵的,经度是横的,用于表示不同的经线,纬线是横的,纬度是纵的,用于表示不同的纬线,如下图
- 纬线:地球仪上的横线,lat,赤道是最大的纬线,从赤道开始分为北纬和南纬,都是0-90°,纬线是角度数值,并不是米;
- 经线:地球仪上的竖线,lng,子午线为0°,分为西经和东经,都是0-180°,经线也是角度数值;
- 经纬线和米的换算:经度或者纬度0.00001度,约等于1米,这个在GPS测算距离的时候可以体会到,GPS只要精确到小数点后五位,就是10米范围内的精度
- 经度0度的位置为本初子午线,在180度的位置转为西经,数字由大到小依次经过北美洲到达西欧.纬度0度的位置为赤道
基本原理
GeoHash是一种地址编码方法。他能够把二维的空间经纬度数据编码成一个字符串
我们知道,经度范围是东经180到西经180,纬度范围是南纬90到北纬90,我们设定西经为负,南纬为负,所以地球上的经度范围就是[-180, 180],纬度范围就是[-90,90]。如果以本初子午线、赤道为界,地球可以分成4个部分。
如果纬度范围[-90°, 0°)用二进制0代表,(0°, 90°]用二进制1代表,经度范围[-180°, 0°)用二进制0代表,(0°, 180°]用二进制1代表,那么地球可以分成如下4个部分
如果在小块范围内递归对半划分呢?
可以看到,划分的区域更多了,也更精确了。geohash算法就是基于这种思想,划分的次数更多,区域更多,区域面积更小了。通过将经纬度编码,给地理位置分区
Geohash算法
Geohash算法一共有三步。
首先将经纬度变成二进制。
比如这样一个点(39.923201, 116.390705)
纬度的范围是(-90,90),其中间值为0。对于纬度39.923201,在区间(0,90)中,因此得到一个1;(0,90)区间的中间值为45度,纬度39.923201小于45,因此得到一个0,依次计算下去,即可得到纬度的二进制表示,如下表:
最后得到纬度的二进制表示为:
10111000110001111001
同理可以得到经度116.390705的二进制表示为:
11010010110001000100
第2步,就是将经纬度合并。
经度占偶数位,纬度占奇数位,注意,0也是偶数位。
11100 11101 00100 01111 00000 01101 01011 00001
第3步,按照Base32进行编码
Base32编码表(其中一种):
Base32编码表的其中一种如下,是用0-9、b-z(去掉a, i, l, o)这32个字母进行编码。具体操作是先将上一步得到的合并后二进制转换为10进制数据,然后对应生成Base32码。需要注意的是,将5个二进制位转换成一个base32码。上例最终得到的值为
wx4g0ec1
Geohash比直接用经纬度的高效很多,而且使用者可以发布地址编码,既能表明自己位于北海公园附近,又不至于暴露自己的精确坐标,有助于隐私保护。
- GeoHash用一个字符串表示经度和纬度两个坐标。在数据库中可以实现在一列上应用索引(某些情况下无法在两列上同时应用索引)
- GeoHash表示的并不是一个点,而是一个矩形区域
- GeoHash编码的前缀可以表示更大的区域。例如wx4g0ec1,它的前缀wx4g0e表示包含编码wx4g0ec1在内的更大范围。 这个特性可以用于附近地点搜索
GeoHash的精度
以上表格来自:https://en.wikipedia.org/wiki/Geohash
从表格中可以看出,如果GeoHash值取7位长度,误差大概在76米左右;如果取8位,误差为19米左右。
编码越长,表示的范围越小,位置也越精确。因此我们就可以通过比较GeoHash匹配的位数来判断两个点之间的大概距离。
具体的计算方法
Latitude的范围是:-90 到 +90
Longitude的范围:-180 到 +180
地球参考球体的周长:40075016.68米
geohash长度 | Lat位数 | Lng位数 | Lat误差 | Lng误差 | km误差 |
---|---|---|---|---|---|
1 | 2 | 3 | ±23 | ±23 | ±2500 |
2 | 5 | 5 | ± 2.8 | ±5.6 | ±630 |
3 | 7 | 8 | ± 0.70 | ± 0.7 | ±78 |
4 | 10 | 10 | ± 0.087 | ± 0.18 | ±20 |
5 | 12 | 13 | ± 0.022 | ± 0.022 | ±2.4 |
6 | 15 | 15 | ± 0.0027 | ± 0.0055 | ±0.61 |
7 | 17 | 18 | ±0.00068 | ±0.00068 | ±0.076 |
8 | 20 | 20 | ±0.000086 | ±0.000172 | ±0.01911 |
9 | 22 | 23 | ±0.000021 | ±0.000021 | ±0.00478 |
10 | 25 | 25 | ±0.00000268 | ±0.00000536 | ±0.0005971 |
11 | 27 | 28 | ±0.00000067 | ±0.00000067 | ±0.0001492 |
12 | 30 | 30 | ±0.00000008 | ±0.00000017 | ±0.0000186 |
1.纬度相同,经度不同
在纬度相同的情况下:
经度每隔0.00001度,距离相差约1米;
每隔0.0001度,距离相差约10米;
每隔0.001度,距离相差约100米;
每隔0.01度,距离相差约1000米;
每隔0.1度,距离相差约10000米。
2.经度相同,纬度不同
纬度每隔0.00001度,距离相差约1.1米;
每隔0.0001度,距离相差约11米;
每隔0.001度,距离相差约111米;
每隔0.01度,距离相差约1113米;
每隔0.1度,距离相差约11132米。
字符串越长代表的精度越高 5位的编码能表示10平方千米,而6位的编码约0.34平方千米
问题
geohash算法有两个问题。首先是边缘问题。
如图,如果车在红点位置,区域内还有一个黄点。相邻区域内的绿点明显离红点更近。但因为黄点的编码和红点一样,最终找到的将是黄点。这就有问题了。
要解决这个问题,很简单,只要再查找周边8个区域内的点,看哪个离自己更近即可。
另外就是曲线突变问题。
本文第2张图片比较好地解释了这个问题。其中0111和1000两个编码非常相近,但它们的实际距离确很远。所以编码相近的两个单位,并不一定真实距离很近,这需要实际计算两个点的距离才行。
代码实现
geohash原理清楚后,代码实现就比较简单了。不过仍然有一个问题需要解决,就是如何计算周边的8个区域key值呢
假设我们计算的key值是6位,那么二进制位数就是 6*5 = 30位,所以经纬度分别是15位。我们以纬度为例,纬度会均分15次。这样我们很容易能够算出15次后,划分的最小单位是多少
private void setMinLatLng() {
minLat = MAXLAT - MINLAT;
for (int i = 0; i < numbits; i++) {
minLat /= 2.0;
}
minLng = MAXLNG - MINLNG;
for (int i = 0; i < numbits; i++) {
minLng /= 2.0;
}
}
得到了最小单位,那么周边区域的经纬度也可以计算得到了。比如说左边区域的经度肯定是自身经度减去最小经度单位。纬度也可以通过加减,得到上下的纬度值,最终周围8个单位也可以计算得到。
可以到 http://geohash.co/ 进行geohash编码,以确定自己代码是否写错
整体代码如下所示:
public class GeoHash {
public static final double MINLAT = -90;
public static final double MAXLAT = 90;
public static final double MINLNG = -180;
public static final double MAXLNG = 180;
private static int numbits = 3 * 5; //经纬度单独编码长度
private static double minLat;
private static double minLng;
private final static char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'k', 'm', 'n', 'p',
'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' };
//定义编码映射关系
final static HashMap<Character, Integer> lookup = new HashMap<Character, Integer>();
//初始化编码映射内容
static {
int i = 0;
for (char c : digits)
lookup.put(c, i++);
}
public GeoHash(){
setMinLatLng();
}
public String encode(double lat, double lon) {
BitSet latbits = getBits(lat, -90, 90);
BitSet lonbits = getBits(lon, -180, 180);
StringBuilder buffer = new StringBuilder();
for (int i = 0; i < numbits; i++) {
buffer.append( (lonbits.get(i))?'1':'0');
buffer.append( (latbits.get(i))?'1':'0');
}
String code = base32(Long.parseLong(buffer.toString(), 2));
//Log.i("okunu", "encode lat = " + lat + " lng = " + lon + " code = " + code);
return code;
}
public ArrayList<String> getArroundGeoHash(double lat, double lon){
//Log.i("okunu", "getArroundGeoHash lat = " + lat + " lng = " + lon);
ArrayList<String> list = new ArrayList<>();
double uplat = lat + minLat;
double downLat = lat - minLat;
double leftlng = lon - minLng;
double rightLng = lon + minLng;
String leftUp = encode(uplat, leftlng);
list.add(leftUp);
String leftMid = encode(lat, leftlng);
list.add(leftMid);
String leftDown = encode(downLat, leftlng);
list.add(leftDown);
String midUp = encode(uplat, lon);
list.add(midUp);
String midMid = encode(lat, lon);
list.add(midMid);
String midDown = encode(downLat, lon);
list.add(midDown);
String rightUp = encode(uplat, rightLng);
list.add(rightUp);
String rightMid = encode(lat, rightLng);
list.add(rightMid);
String rightDown = encode(downLat, rightLng);
list.add(rightDown);
//Log.i("okunu", "getArroundGeoHash list = " + list.toString());
return list;
}
//根据经纬度和范围,获取对应的二进制
private BitSet getBits(double lat, double floor, double ceiling) {
BitSet buffer = new BitSet(numbits);
for (int i = 0; i < numbits; i++) {
double mid = (floor + ceiling) / 2;
if (lat >= mid) {
buffer.set(i);
floor = mid;
} else {
ceiling = mid;
}
}
return buffer;
}
//将经纬度合并后的二进制进行指定的32位编码
private String base32(long i) {
char[] buf = new char[65];
int charPos = 64;
boolean negative = (i < 0);
if (!negative){
i = -i;
}
while (i <= -32) {
buf[charPos--] = digits[(int) (-(i % 32))];
i /= 32;
}
buf[charPos] = digits[(int) (-i)];
if (negative){
buf[--charPos] = '-';
}
return new String(buf, charPos, (65 - charPos));
}
private void setMinLatLng() {
minLat = MAXLAT - MINLAT;
for (int i = 0; i < numbits; i++) {
minLat /= 2.0;
}
minLng = MAXLNG - MINLNG;
for (int i = 0; i < numbits; i++) {
minLng /= 2.0;
}
}
//根据二进制和范围解码
private double decode(BitSet bs, double floor, double ceiling) {
double mid = 0;
for (int i=0; i<bs.length(); i++) {
mid = (floor + ceiling) / 2;
if (bs.get(i))
floor = mid;
else
ceiling = mid;
}
return mid;
}
//对编码后的字符串解码
public double[] decode(String geohash) {
StringBuilder buffer = new StringBuilder();
for (char c : geohash.toCharArray()) {
int i = lookup.get(c) + 32;
buffer.append( Integer.toString(i, 2).substring(1) );
}
BitSet lonset = new BitSet();
BitSet latset = new BitSet();
//偶数位,经度
int j =0;
for (int i=0; i< numbits*2;i+=2) {
boolean isSet = false;
if ( i < buffer.length() )
isSet = buffer.charAt(i) == '1';
lonset.set(j++, isSet);
}
//奇数位,纬度
j=0;
for (int i=1; i< numbits*2;i+=2) {
boolean isSet = false;
if ( i < buffer.length() )
isSet = buffer.charAt(i) == '1';
latset.set(j++, isSet);
}
double lon = decode(lonset, -180, 180);
double lat = decode(latset, -90, 90);
return new double[] {lat, lon};
}
public static void main(String[] args) throws Exception{
GeoHash geohash = new GeoHash();
// String s = geohash.encode(40.222012, 116.248283);
// System.out.println(s);
geohash.getArroundGeoHash(40.222012, 116.248283);
// double[] geo = geohash.decode(s);
// System.out.println(geo[0]+" "+geo[1]);
}
}
geohash在mysql中的使用
mysql中有四个内置函数跟geohash相关。
函数 | 说明 |
---|---|
ST_GeoHash() | 产生geohash值 |
ST_LongFromGeoHash() | 从geohash值返回经度 |
ST_LatFromGeoHash() | 从geohash值返回纬度 |
ST_PointFromGeoHash() | 将geohash值转换为POINT值 |
具体使用方法可参考:https://dev.mysql.com/doc/refman/8.0/en/spatial-geohash-functions.html#function_st-geohash
简单使用
#创建 point 表
create table `geom`(
`id` int not null auto_increment,
`geom` point not null,
primary key(`id`)
);
#插入数据
insert into `geom` (`geom`) VALUES
(st_geomFromText('Point(1 1)')),
(st_geomFromText('Point(2 2)'));
# geohash
SELECT st_geohash(`geom`,12) as geohash from `geom`;
结果
其中st_geomFromText()
可以传入WKT类型的字符串生成geometry对象。
- st_geohash(point类型,geohash长度)
- st_geohash(精度,纬度,geohash长度)
sql使用
SELECT ST_AsText(ST_PointFromGeoHash('ws7gm',0));
select ST_PointFromGeoHash('ws7gm',6);
select ST_LatFromGeoHash('ws7gm'),ST_LongFromGeoHash('ws7gm');
select st_geohash(118,24.5,5);
select distinct ST_AsText(ST_PointFromGeoHash(a.geohash5,0)) from (
SELECT distinct ST_GeoHash(longitude,latitude,5) as geohash5 from poi_miniapp_total ) a
select distinct a.geohash5,ST_LatFromGeoHash(a.geohash5) as latitude,ST_LongFromGeoHash(a.geohash5) as longitude from (
SELECT distinct ST_GeoHash(longitude,latitude,5) as geohash5 from poi_miniapp_total ) a
参考:https://www.jianshu.com/p/2fd0cf12e5ba
https://www.cnblogs.com/feiquan/p/11380461.html
https://blog.csdn.net/ununie/article/details/100521397
https://blog.csdn.net/youhongaa/article/details/78816700
精度问题:
https://blog.csdn.net/ununie/article/details/96963642
https://segmentfault.com/a/1190000002513514
https://blog.csdn.net/bitcarmanlee/article/details/55824141
https://blog.csdn.net/qq_39341048/article/details/104910984