Jetson Nano
文章平均质量分 76
Arnold-FY-Chen
On the way of AI spiritual practice...
展开
-
Jetson上如何集成支持使用GPU的NCNN到应用程序
nccn通过vulkan使用GPU,所以实际上需要集成vulkan和ncnn的头文件和so库。用于Jetson的JetPack里默认提供了vukan的so文件,例如libvulkan.so.1.2.142以及指向它的链接libvulkan.so.1,但是没有libvulkan.so这个名字的so文件或者链接,所以需要创建一个如下的链接:ln -s libvulkan.so.1 libvulkan.soncnn的源码里包含有vulkan的头文件,所以头文件就不用从https://github..原创 2021-10-16 19:48:51 · 2706 阅读 · 0 评论 -
NVIDIA vulkan driver的安装和Jetson平台上vulkan sdk的制作
vulkan是类似opengl这样的封装层,或者叫中间层,用于屏蔽不同类型GPU的差异,向上层应用程序提供统一的接口,用过Java SDK或者其他中间件做过开发的很好理解这个概念,所以vulkan也有自己的vulkan SDK,LunarXchange提供了Windows、Linux、Mac和Android等版本的SDK,不过Linux版的SDK只有X86版本的,所以Jetson这种arm64版的得自己下载源码编译: 对于GPU的支持vulkan的driver, NV...原创 2021-09-30 17:26:43 · 4817 阅读 · 0 评论 -
在Jetson Nano上编译onnxruntime
因为做模型精度损失的对比需要,上个月用过了MS家的onnxruntime (https://github.com/microsoft/onnxruntime),一如MS的产品风格,要求不高的小项目用还凑合,不要指望有多高的性能能用在大规模项目上,不过它有个好处就是支持了多种OS和CPU,支持多种语言,常用的python和C/C++版都能很快用起来,用来在多个不同硬件平台上做模型推理的快速验证和做对比还是不错的,比如一个模型用python调用精度很好,改用onnxruntime调用它精度也差不多很...原创 2020-11-29 13:34:57 · 4298 阅读 · 20 评论 -
Cudnn占用大量内存问题
近来在对一个3D图像识别模型做部署裁剪时发现,做了一些有效的裁剪后,模型启动后占用的内存虽然减少了两三百个M,但是再继续对网络做裁剪缺减少不明显了,包含封装调用这个模型的deepstream插件在内始终占用800多个M,感觉很奇怪,于是花了些时间,捣腾琢磨网络本身的C++实现代码,找出哪些代码执行后占用了可观的内存,最后发现,其他跟训练有关的可减的都减了也没见省多少内存,但是模型启动的过程中,当cudnn的API被第一次调用时,启动有卡顿,同时看着内存一路不停飙升,把相关网络层的代码注释掉试试,...原创 2020-09-30 22:29:08 · 1130 阅读 · 1 评论 -
NVIDIA Jetson Nano视频解码需要注意的一个问题
NVIDIA的边缘计算的序列板子都配备了视频编码器和解码器,使用解码器硬件解码当然比使用OpenCV+ffmpeg之类的软解码要快多了。使用Jetson Nano的解码程序遇到个问题就是Jetson Nano在存放解码出来的图像的YUV数据时没有完全遵循一般的规范来做。 一般在压缩视频(DV设备生成)中YUV420格式使用较多,YUV420准确的说应该叫YCbCr420,YCb...原创 2020-02-23 16:28:24 · 6235 阅读 · 8 评论 -
在jetson nano上安装ROS melodic
Jetson nano的镜像使用的是Ubuntu18.04 LTS (绰号Bionic),因此在jetson nano上安装ROS得选择Melodic版,但是因为jetson nano使用的是ARM64架构的芯片,不是X86-64的,而Melodic的ARM64版安装包在国内的清华、中科大等几个源上没有,只能连到国外的服务器上安装,如果你有翻越那伟大的墙的帐号(不明白为何要屏蔽技术类网址...原创 2019-09-07 23:44:39 · 4415 阅读 · 1 评论