hdu 还是畅通工程

Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
 

Output
对每个测试用例,在1行里输出最小的公路总长度。
 

Sample Input
  
  
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
 

Sample Output
  
  
3

5

把各个村子看成独立的,然后sort排序从路径最短的开始排使用并差集,将已经连通的村子看成一个村子,保存路径之和即可;

#include<stdio.h>
#include<iostream>
#include<queue>
#include<string.h>
#include<algorithm>
#include<map>
using namespace std;
int a[1000];
int b[1000];//存以i为根节点的村子要连通所需的路
int y;
int fin(int k)
{
    int r=k;
    while(r!=a[r])
    {
        r=a[r];
    }
    int j=k;
    while(j!=a[j])
    {
        int i=a[j];
        a[j]=r;
        j=i;
    }
    return r;
}
struct st
{
    int a1,a2,s;
};
int mia(st r)
{
    int i,j;
    i=fin(r.a1);//找a1所在村子的根节点
    j=fin(r.a2);//找a2所在村子的根节点
    if(i!=j)
    {
        a[i]=j;
       // b[j]=b[i]+b[j]+r.s;b[i]=0;y=b[j];(本来的做法,如果两个村子还没连通,将i的根节点变成j 然后连通i,j的路保存在b[j]中,但是有错误)
        y+=r.s;//连通并将路长度加入到路之和中
    }
}

int cmp(st a,st b)
{
    return a.s<b.s;
}
int main()
{
    st c[5100];
    int n;
    int i,j;

    while(cin>>n)
    {
        y=0;
        for(i=0;i<=n;i++)
        {
            a[i]=i;
        }
        memset(b,0,sizeof(b));
        if(n==0)
            break;
        int m=n*(n-1)/2;
        for(i=0;i<m;i++)
        {
            cin>>c[i].a1>>c[i].a2>>c[i].s;
        }
        sort(c,c+m,cmp);
        for(i=0;i<m;i++)
        {
            mia(c[i]);
        }
        printf("%d\n",y);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值