Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
35
把各个村子看成独立的,然后sort排序从路径最短的开始排使用并差集,将已经连通的村子看成一个村子,保存路径之和即可;
#include<stdio.h> #include<iostream> #include<queue> #include<string.h> #include<algorithm> #include<map> using namespace std; int a[1000]; int b[1000];//存以i为根节点的村子要连通所需的路 int y; int fin(int k) { int r=k; while(r!=a[r]) { r=a[r]; } int j=k; while(j!=a[j]) { int i=a[j]; a[j]=r; j=i; } return r; } struct st { int a1,a2,s; }; int mia(st r) { int i,j; i=fin(r.a1);//找a1所在村子的根节点 j=fin(r.a2);//找a2所在村子的根节点 if(i!=j) { a[i]=j; // b[j]=b[i]+b[j]+r.s;b[i]=0;y=b[j];(本来的做法,如果两个村子还没连通,将i的根节点变成j 然后连通i,j的路保存在b[j]中,但是有错误) y+=r.s;//连通并将路长度加入到路之和中 } } int cmp(st a,st b) { return a.s<b.s; } int main() { st c[5100]; int n; int i,j; while(cin>>n) { y=0; for(i=0;i<=n;i++) { a[i]=i; } memset(b,0,sizeof(b)); if(n==0) break; int m=n*(n-1)/2; for(i=0;i<m;i++) { cin>>c[i].a1>>c[i].a2>>c[i].s; } sort(c,c+m,cmp); for(i=0;i<m;i++) { mia(c[i]); } printf("%d\n",y); } return 0; }