AI深度学习
主要在AI、深度学习领域中的应用
宣晨光
向往架构师,专注于微服务治理、人工智能领域;对前端、服务端、数据库、容器化、大数据、区块链等都有涉及。
展开
-
【模型训练】-图形验证码识别
MaxPool2d :减少数据空间大小,池化窗口的大小,通常设置为2×2。减少参数数量和计算量,同时也能提高模型的鲁棒性。BatchNorm(512):对输入数据进行归一化处理,使得每个通道的数据均值为0,方差为1,提高模型的泛化能力。dropout:随机丢弃神经元的输出来减少模型的复杂度和过拟合的风险。padding 完成卷积后是否填充空白。原创 2024-03-05 17:47:08 · 768 阅读 · 0 评论 -
【工具】PIL图片颜色处理
使用前置函数,用于图片效果显示。原创 2024-03-06 08:40:31 · 503 阅读 · 0 评论 -
【工具】-分割训练、测试集
以下python代码,主要是将原始的文件夹下多分类数据集进行训练、测试集拆分。拆分的数据随机打散、并保持训练:测试= 8:2。原创 2024-03-04 17:10:48 · 392 阅读 · 0 评论 -
【工具】-批量压缩图片
以下python代码,主要将原始文件夹data_dir下的,七个子文件夹。读取内部图片,将图片压缩到(100,100)的尺寸。并且将图片小于10的过滤掉。在拿到数据集后,需要将原始数据标准化。原创 2024-03-04 17:05:30 · 362 阅读 · 0 评论