题目要求
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。- 示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2 - 示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1 - 示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4 - 示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0 - 示例 5:
输入: nums = [1], target = 0
输出: 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/search-insert-position
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法
二分法
直接使用二分法的话,查找到的条件是目标值和数组中元素相等;但是这里题目中描述的是数组中可能不存在与目标值相等的元素,此时的操作是返回插入该元素的位置,所以可以略微修改二分查找的条件:
n
u
m
s
[
r
i
g
h
t
−
1
]
<
t
a
r
g
e
t
≤
n
u
m
s
[
r
i
g
h
t
]
l
e
f
t
>
r
i
g
h
t
nums[right - 1] < target \leq nums[right]\\ left > right
nums[right−1]<target≤nums[right]left>right
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int len = nums.size();
if (len == 0)
{
return 0;
}
int left = 0;
int right = len - 1;
while (left <= right)
{
int mid = ((right - left) >> 1) + left;
if (target <= nums[mid])
{
right = mid - 1;
}
else if (target > nums[mid])
{
left = mid + 1;
}
}
return right + 1;
}
};
复杂度分析
时间复杂度:数组二分,复杂度为
O
(
log
(
n
)
)
O(\log(n))
O(log(n)),也符合题目要求
空间复杂度:
O
(
1
)
O(1)
O(1)