深度学习点云匹配
xckkcxxck
这个作者很懒,什么都没留下…
展开
-
使用深度学习进行点云匹配(二)
本文承接上一篇《使用深度学习进行点云匹配(一)》。在上一篇研究了Demo代码如何实现根据3Dmatch描述子实现点云配对以后,接下来的问题就是如何训练出3Dmatch描述子。在此之前,作者先将数据转换为了TDF体素网络,今天便来解析这部分是怎么做的。但是我昨天研究了一天,有一些地方还是没有搞懂,也只能先记录下来,如果有人明白,可以评论告诉我。先看github中给出的操作步骤:翻译一...原创 2019-06-15 10:22:07 · 4286 阅读 · 2 评论 -
使用深度学习进行点云匹配(一)
前言:使用深度学习进行点云匹配研究是我的毕设题目。因为之前只学习过深度学习在2D CV上的一些知识,对于三维点云这种东西根本没有听说过,因此也是感觉头大。好在老师给了我一篇paper,让我先去研究里面的方法,这篇论文是CVPR2017年的一篇口头报告,《3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions》...原创 2019-06-15 10:22:18 · 18501 阅读 · 38 评论 -
使用深度学习进行点云匹配(三)
接上一篇,接下来我们要研究的是如何训练出点云中3DMatch描述子。这里我们要引入一个深度学习框架:Marvin,正如我们耳详能熟的keras,pytorch,tensorflow等深度学习框架一样,Marvin也是一个深度学习框架,那么它的特征是什么呢?Marvin是普林斯顿大学视觉工作组http://vision.princeton.edu/新推出的C++框架,它只支持GPU下运行使用,也就...原创 2019-06-15 10:21:50 · 3068 阅读 · 0 评论 -
使用深度学习进行点云匹配(五)
本文承接前一篇:使用深度学习进行点云匹配四,今天要研究的是关于TDF的具体含义和如何训练3D match描述子的方法。之前提到了使用3D match进行迁移学习的代码,但是那个相当于利用已经训练好的权重只进行了一次前向传播,得出512维的描述子后进行匹配,那么这些权重是如何训练出的,这就是今天要探究的主题。首先回顾一下TDF,之前提到的TDF我并没有很深的理解,今天再次细读论文,论文中的介绍是...原创 2019-06-15 10:21:36 · 2269 阅读 · 2 评论 -
使用深度学习进行点云匹配(四)
承接上一篇文章《使用深度学习进行点云匹配(三)》。因为之前提到过因为硬件原因我自己无法去训练3Dmatch描述子,因此接下来我的任务是尝试应用这个模型。我更换了原来的点云数据,新数据来自于斯坦福大学的3D扫描数据库,网址为;http://graphics.stanford.edu/data/3Dscanrep/,我使用了其中赫赫有名的兔子模型。点击蓝字进行下载,解压后会发现里面有很多ply...原创 2019-06-15 10:21:22 · 2062 阅读 · 1 评论 -
利用深度学习进行点云匹配(六)
本文承接上一篇:利用深度学习进行点云匹配(五)。之前的文章介绍了3D match如何进行点云匹配,总结来说它使用了Siamese network的设计思想,在Point cloud,Mesh和Depth map三种数据中找出匹配的对应点,围绕对应点取出一个立方块,计算它的TDF,将匹配的体素块送入模型中,要求训练的损失变得越来越小,同时为对应点找到一个随机的不对应点(这个点也是有要求的),并将...原创 2019-06-15 10:21:08 · 3288 阅读 · 3 评论