pytorch
文章平均质量分 95
xckkcxxck
这个作者很懒,什么都没留下…
展开
-
pytorch-损失函数-分类和回归区别
输入:预测值和目标值。预测值的形状应该是(batch_size, num_classes),表示对每个类别的预测概率;目标值的形状应该是(batch_size,),表示每个数据的真实类别标签。输入:预测值和目标值,它们的形状应该是相同的。例如,如果你有一个批量大小为batch_size的数据,每个数据有n个特征,那么预测值和目标值的形状都应该是(batch_size, n)。输出:一个标量,表示计算得到的均方误差损失。输出:一个标量,表示计算得到的交叉熵损失。原创 2023-11-04 16:48:55 · 1519 阅读 · 1 评论 -
pytorch学习:梯度下降代码
# -*- coding: utf-8 -*-"""Created on Sun Sep 2 15:54:06 2018@author: www"""import numpy as npimport torchfrom torchvision.datasets import MNISTfrom torch.utils.data import DataLoaderfrom ...原创 2018-09-02 17:12:50 · 1682 阅读 · 0 评论 -
pytorch学习:逻辑回归代码
# -*- coding: utf-8 -*-"""Created on Sun Sep 2 09:50:01 2018@author: www"""import torchfrom torch.autograd import Variableimport numpy as npimport matplotlib.pyplot as plt#设定随机种子torch.m...原创 2018-09-02 12:18:05 · 1024 阅读 · 0 评论 -
pytorch学习:一元线性回归代码
# -*- coding: utf-8 -*-"""Created on Tue Aug 7 11:15:54 2018@author: www"""import numpy as npimport torchfrom torch import nnfrom torch import optimfrom torch.autograd import Variableimpo...原创 2018-08-07 12:17:30 · 476 阅读 · 0 评论 -
java 蓝桥杯 等差素数序列
2,3,5,7,11,13,....是素数序列。类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。上边的数列公差为30,长度为6。2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。这是数论领域一项惊人的成果!有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:长度为10的等差素数列,其公差最小值是多少? 注意:需要提交...原创 2018-03-16 18:57:42 · 408 阅读 · 0 评论 -
pytorch中的循环神经网络模块
对于最简单的RNN,我们可以使用以下两个方法调用,分别是 torch.nn.RNNCell() 和 torch.nn.RNN(),这两种方式的区别在于 RNNCell() 只能接受序列中单步的输入,且必须传入隐藏状态,而 RNN() 可以接受一个序列的输入,默认会传入全 0 的隐藏状态,也可以自己申明隐藏状态传入。RNN()的参数:input_size 表示输入特征的维度;hidden...原创 2018-10-09 08:56:39 · 523 阅读 · 0 评论 -
pytorch 利用lstm做mnist手写数字识别分类
代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。# -*- coding: utf-8 -*-"""Created on Tue Oct 9 08:53:25 2018@author: www"""import syssys.path.append('..')import torchimport datetimefrom torch.autogra...原创 2018-10-09 10:47:55 · 4991 阅读 · 3 评论 -
pytorch报错:UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5.。。原因
UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number当报这个错的一般会有两个原因,一个是这种写法:loss.data[0] 应该改成loss.i...原创 2018-10-09 10:51:19 · 3855 阅读 · 1 评论 -
pytorch:一个非常好用的工具文件
在pytorch中去写训练函数和测试函数是一件重复的事,因此可以写成一个总的训练文件。from datetime import datetimeimport torchimport torch.nn.functional as Ffrom torch import nnfrom torch.autograd import Variabledef get_acc(output,...原创 2018-10-09 10:56:03 · 591 阅读 · 0 评论 -
pytorch RNN用于时间序列的分析
本文参考书籍《深度学习入门之pytorch》首先看一下我们的数据集:可以看出数据有递增的趋势,但是有很大的波动性。这里我们尝试用rnn来解决。贴一下代码:# -*- coding: utf-8 -*-"""Created on Tue Oct 9 11:28:39 2018@author: www"""import numpy as npimport pan...原创 2018-10-09 15:44:53 · 9476 阅读 · 9 评论 -
pytorch学习:动量法momentum
关于动量法的原理这里不写了,参考别的文章:https://blog.csdn.net/tsyccnh/article/details/76270707以下是代码实现:# -*- coding: utf-8 -*-"""Created on Sun Sep 2 15:54:06 2018@author: www"""import numpy as npimport tor...原创 2018-09-02 21:06:02 · 5770 阅读 · 0 评论 -
pytorch学习:MNIST手写数字识别代码
# -*- coding: utf-8 -*-"""Created on Mon Sep 3 08:38:27 2018@author: www"""import torchfrom torch import nnfrom torchvision.datasets import MNISTimport numpy as npfrom torch.autograd impo...原创 2018-09-03 10:21:10 · 3535 阅读 · 6 评论 -
pytorch学习:图像中的数据预处理和批标准化
目前数据预处理最常见的方法就是中心化和标准化。中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1 ~ 1 之间批标准化:BN在数据预处理的时候,我们尽量输入特征不...原创 2018-09-03 18:41:20 · 6441 阅读 · 0 评论 -
pytorch : LSTM做词性预测
本文学习于书籍《深度学习入门之pytorch》对于一个单词,会有这不同的词性,首先能够根据一个单词的后缀来初步判断,比如 -ly 这种后缀,很大概率是一个副词,除此之外,一个相同的单词可以表示两种不同的词性,比如 book 既可以表示名词,也可以表示动词,所以到底这个词是什么词性需要结合前后文来具体判断。根据这个问题,我们可以使用 lstm 模型来进行预测,首先对于一个单词,可以将其看作一...原创 2018-10-11 13:39:16 · 1698 阅读 · 1 评论 -
pytorch 自动编码器
这里主要使用自动编码器实现生成数据,以MNIST数据为例。# -*- coding: utf-8 -*-"""Created on Thu Oct 11 20:34:33 2018@author: www"""import osimport torchfrom torch.autograd import Variablefrom torch import nnfrom...原创 2018-10-11 21:15:08 · 1799 阅读 · 0 评论 -
pytorch 实现变分自动编码器
本来以为自动编码器是很简单的东西,但是也是看了好多资料仍然不太懂它的原理。先把代码记录下来,有时间好好研究。这个例子是用MNIST数据集生成为例子。# -*- coding: utf-8 -*-"""Created on Fri Oct 12 11:42:19 2018@author: www"""import osimport torchfrom torch.aut...原创 2018-10-12 16:05:15 · 3512 阅读 · 0 评论 -
pytorch:实现简单的GAN(MNIST数据集)
# -*- coding: utf-8 -*-"""Created on Sat Oct 13 10:22:45 2018@author: www"""import torchfrom torch import nnfrom torch.autograd import Variableimport torchvision.transforms as tfsfrom tor...原创 2018-10-13 11:39:28 · 2296 阅读 · 0 评论 -
pytorch学习:densenet做CIFAR10分类代码
# -*- coding: utf-8 -*-"""Created on Wed Sep 5 09:10:52 2018@author: www"""import syssys.path.append('...')import numpy as npimport torchfrom torch import nnfrom torch.autograd import V...原创 2018-09-05 11:08:37 · 3485 阅读 · 2 评论 -
pytorch学习:resnet做CIFAR10分类代码
# -*- coding: utf-8 -*-"""Created on Tue Sep 4 21:17:05 2018@author: www"""import syssys.path.append("...")import numpy as npimport torchfrom torch import nnimport torch.nn.functional a...原创 2018-09-04 22:17:10 · 1924 阅读 · 0 评论 -
pytorch学习:googlenet做CIFAR10分类代码
# -*- coding: utf-8 -*-"""Created on Tue Sep 4 15:16:18 2018@author: www"""import syssys.path.append("...")import numpy as npimport torchfrom torch.autograd import Variablefrom torch im...原创 2018-09-04 20:30:01 · 5572 阅读 · 3 评论 -
pytorch学习 :vgg做CIFAR10分类代码
# -*- coding: utf-8 -*-"""Created on Tue Sep 4 08:47:56 2018@author: www"""import syssys.path.append('...')import numpy as npimport torchfrom torch import nnfrom torch.autograd import V...原创 2018-09-04 10:44:41 · 6162 阅读 · 3 评论 -
pytorch学习:卷积模块介绍代码
# -*- coding: utf-8 -*-"""Created on Mon Sep 3 20:24:28 2018@author: www"""import numpy as npimport torchfrom torch import nnfrom torch.autograd import Variableimport torch.nn.functional ...原创 2018-09-03 20:53:47 · 1543 阅读 · 0 评论 -
pytorch:词嵌入和n-gram
本文学习于《深度学习入门之Pytorch》 对于图像分类的问题,我们会使用one-hot方式进行分类,但是对于NLP中的问题,处理单词这种十分多种类的问题时,使用one-hot是行不通的,这个时候就引入了词嵌入。 词向量简单来说就是用一个向量去表示一个词语,但是这个向量并不是随机的,因为这样并没有任何意义,所以我们需要对每个词有一个特定的向量去表示他们,而有一些词的词...原创 2018-10-11 10:41:17 · 1225 阅读 · 2 评论