在电商平台上,广告投放的精准度对于提升广告效果至关重要。平台可以通过一系列数据分析和图搜索算法的应用,来精确锁定目标受众。
首先,电商平台会从庞大的用户数据库中识别出那些具有明显购买或浏览行为的用户,这些用户因为表现出对商品的高度兴趣,因此被选为种子用户。种子用户的选择是基于他们的历史购买记录、浏览习惯、点击行为等数据进行的。
接下来,就可以运用图搜索算法沿着用户行为网络图进行搜索。在这个网络图中,每个节点代表一个用户,节点之间的边代表了用户之间的某种联系,可能是共同的购买行为、相似的浏览习惯或者其他形式的互动。图搜索算法,如深度优先搜索(DFS)或广度优先搜索(BFS),会在这个网络中展开,寻找与种子用户兴趣相似的其他潜在用户。
如何找到相似性强的用户?可以通过分析大量用户的行为数据,用协同过滤的推荐系统算法发现用户之间的相似性。协同过滤可以分为两类:用户基协同过滤和物品基协同过滤。用户基协同过滤主要是通过计算用户之间的相似度,比如使用皮尔逊相关系数、余弦相似度等,来找出兴趣相似的用户。物品基协同过滤则是通过计算物品之间的相似度,来为用户推荐他们可能感兴趣的商品。
当然还有其它很多方式,基于内容分析和度学习模型之类,就不在这讨论了。
写一个简单的例子展示思路:
import numpy as np
from collections import deque
# 创建一个用户-商品交互矩阵,行代表用户,列代表商品,值代表用户对商品的喜好程度
user_item_matrix = np.array([
[0, 1, 2, 0], # 用户1
[1, 0, 0, 1], # 用户2
[2, 1, 0, 0], # 用户3
[0, 0, 1, 2], # 用户4
])
# 假设用户1是我们的种子用户
seed_user = 0
# 计算用户间的相似度,这里简单地使用余弦相似度
def cosine_similarity(vec1, vec2):
dot_product = np.dot(vec1, vec2)
magnitude = np.linalg.norm(vec1) * np.linalg.norm(vec2)
if not magnitude:
return 0
return dot_product / magnitude
# 使用广度优先搜索找到与种子用户兴趣相似的其他用户
def bfs_find_similar_users(seed_user, user_item_matrix, similarity_threshold):
queue = deque([seed_user])
visited = set([seed_user])
similar_users = []
while queue:
current_user = queue.popleft()
for other_user in range(len(user_item_matrix)):
if other_user == current_user or other_user in visited:
continue
similarity = cosine_similarity(user_item_matrix[current_user], user_item_matrix[other_user])
if similarity >= similarity_threshold:
queue.append(other_user)
visited.add(other_user)
similar_users.append(other_user)
return similar_users
# 执行搜索
similar_users = bfs_find_similar_users(seed_user, user_item_matrix, similarity_threshold=0.5)
print("Similar users to seed user:", similar_users)
代码中加入了用户间兴趣相似度的计算,我们使用余弦相似度作为度量。余弦相似度是通过测量两个向量的夹角的余弦值来度量它们之间的相似度。在用户-商品交互矩阵中,每一行可以看作是一个用户的兴趣向量,我们可以通过计算两个用户兴趣向量的余弦相似度来度量他们之间的兴趣相似度。
在bfs_find_similar_users
函数中。我们遍历每一个用户,计算他们与当前用户的余弦相似度,如果相似度大于等于我们设定的阈值,我们就认为这两个用户是相似的,然后将这个用户加入到队列中,等待后续的搜索。