识别热点事件/热点新闻(图搜索算法/度中心性算法)

度中心性是衡量节点在图中重要性的指标,常用于识别社交网络中的关键用户、网页排名和交通网络的关键节点。在新闻事件识别中,高度中心性的新闻可能成为热点。然而,度中心性忽略了边的权重和节点间的层次差异,且在大型网络中可能导致分布不均。
摘要由CSDN通过智能技术生成

        度中心性(Degree Centrality)是网络分析中一个基本且重要的概念,用于衡量图中一个节点的重要性。在社交网络、互联网连接、神经网络以及各种类型的图中,度中心性都是一个关键的度量指标。

度中心性的定义

在图中,一个节点的度(Degree)是指该节点连接的边(Edge)的数量。度中心性就是基于节点的度来衡量其在图中的中心地位或重要性的指标。

具体来说:

  • 对于无向图,一个节点的度中心性是该节点的度除以图中最大的可能节点度(即图中节点数减一)。
  • 对于有向图,可以区分进入度(In-degree,指向该节点的边的数量)和外出度(Out-degree,从该节点出发的边的数量),度中心性可以基于进入度或外出度来计算。

度中心性的计算公式

对于无向图,节点 𝑖i 的度中心性 𝐶𝐷(𝑖)CD​(i) 可以用以下公式计算:

𝐶𝐷(𝑖)=𝑑(𝑖)𝑛−1CD​(i)=n−1d(i)​

其中:

  • 𝑑(𝑖)d(i) 是节点 𝑖i 的度,即它连接的边的数量。
  • 𝑛n 是图中节点的总数。

对于有向图,节点 𝑖i 的度中心性可以基于进入度 𝑑−(𝑖)d−(i) 或外出度 𝑑+(𝑖)d+(i) 来计算:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值