tensoflow keras 多分类 precision的代码

本文介绍了一个名为CategoricalPrecision的自定义TensorFlow Keras指标,用于评估多分类任务中每个类别的预测精度,通过设置阈值判断样本预测有效性。它返回一个包含每个类别精度的字典,适用于类别数量固定且需要精确评估的模型。
摘要由CSDN通过智能技术生成
import tensorflow as tf
from tensorflow import keras
class CategoricalPrecision(tf.keras.metrics.Metric):
    def __init__(self, categories=4, threshold=0.0, name='categorical_precision', **kwargs):
        super(CategoricalPrecision, self).__init__(name=name, **kwargs)
        self.categories = categories
        self.threshold = tf.constant([threshold], dtype='float32')
        self.positives = self.add_weight(name='positives', shape=(categories,), dtype=tf.dtypes.int32, initializer='zeros')
        self.predications = self.add_weight(name='predications', shape=(categories,), dtype=tf.dtypes.int32, initializer='zeros')

    def update_state(self, y_true, y_pred, sample_weight=None):
        preds = tf.cast(tf.math.argmax(y_pred, axis=1), tf.dtypes.int32)
        probs = tf.reduce_max(y_pred, axis=1)
        values = tf.cast(tf.wh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值