Ubuntu16.04搭建深度学习环境

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xd1723138323/article/details/79147951

Ubuntu16.04搭建深度学习环境


1.安装Python


step1:python官网去下载python解释器

由于我的系统是64位,所有下载64位的python源码Python-3.6.4.tar.xz

step2:利用命令tar-Jxvf Python-3.6.4.tar.xz -C destinationDir 解压
destinationDir是你想要解压的地方。注意:tar.xz的解压参数是-Jxvf ,  tar.gz的解压参数-xzvf

step3:为了能够使用import matplotlib.pyplot as plt 不出现下面这个错误


先更新ubuntu的软件源,再安装python3-tk,具体命令如下:

1备份原来的软件源:sudo  cp   /ect/apt/sources.list   /etc/apt/sources.list.bak

2跟换源:sudo gedit  /etc/apt/sources.list  ,然后将阿里云的源换到里面保存

3更新:sudo apt-get update

4更新软件:sudo apt-get upgrade

阿里云源:

# deb cdrom:[Ubuntu 16.04 LTS _Xenial Xerus_ - Release amd64 (20160420.1)]/ xenial main restricted
deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse
安装python3-tk,【python3-tktcltk两个部分组成】,到网站

https://www.tcl.tk/software/tcltk/download.html下载对应的tcltk,我下载的是8.6.8版本:

下载完成后解压。


安装tcl

cdtcl8.6.8/unix

sudo./configure

sudomake

sudomake install


安装tk

cdtk8.6.8/unix

sudo./confiugre

sudomake

sudomake install

如果在安装tk的过程中出现fatal error:X11/Xlib.h:No such file or directroy错误,是因为x11没有完整安装,

使用如下命令安装即可

sudo apt-get install libghc-x11-dev


说明:如果之前已经安装过python,则需要重新按下面的安装python的办法安装python,这里的源码安装和以前安装的源码是一样的。重新安装python3.6后,进入python3.6命令互模式,如果能够出现

下面这个截图,则说明安装成功 

在安装python之前需要安装zlib等包,具体命令如下:

sudo apt-get install zlib*

sudo apt-get install openssl

sudo apt-get install libssl-dev

sudo apt-get install libbz2-dev      #后来使用pytorch时用到了


安装python

sudo ./configure –with-ssl=openssl  --enable-shared

sudo make

sudo make install

sudo libpython3.6m.so.1.0 /usr/lib

执行第一条命令时一定要带上—with-ssl参数,否则安装完后不能使用pip3来安装python的包,

./configure过程中,默认是不能使用ssl功能的,pip3安装python模块要使用ssl功能,所以需要明

确指定;在安装的过程中,他会自动更新pip39.0.1版本,所以不需要手动更新。

--enable-shared 解决后期安装caffe,共享库libpython3.6m.so.1.0问题,后期遇到重新编译会很麻烦

补充手动安装

pip命令如下:

sudoapt-get install python3-pip

sudopython3.6 -m pip3 install –upgrade pip [这两条命令未测试,可以参考]


2.安装Python机器学习常用模块


step4:安装numpy

sudo pip3 install numpy


step5:安装matplotlib

sudo pip3 install matplotlib


step6:安装scikit-learn

sudo pip3 install scikit-learn


step7:安装scipy

sudo pip3 install scipy


step8:安装pandas [用数据探索和数据分析]

sudo pip3 install pandas


step9:安装statsmodels [主要用于统计分析]

sudo pip3 install statsmodels


step10:安装gensim[用于文本挖掘]

sudo pip3 install gensim


step11:安装tensorflow

sudo pip3 install tensorflow


step12:安装keras

sudo pip3 install keras


step13:安装jieba[用于分词]

sudo pip3 install jieba


step14:安装scikit-image

sudo pip3 install -U scikit-image


step15:安装pillow

sudo pip3 install pillow



说明:matplotlibscipy.misc,scikit-image,pillow都有imread,都可以读取图片,此5张图参考其他的博客写的




3.安装PythonIDE

PythonIDE非常多,但是感觉看到eclipse非常亲切,而且功能也很强大。


step14:下载JAVA安装环境,解压到相应的位置

tar-xzvf jdk-8u162-linux-x64.tar.gz -C destinationDir


step15:配置环境变量

sudovim /etc/profile

具体内容如下:



step15:下载eclipse,同样解压,配置环境变量如上图


step16:安装pydev,这里选择在线安装方式。


 启动eclipsehelp→installnew software




点击add按钮,并按照下图填写Repository



点击OK,选中PyDevPyDevMylyn Integrationoptional),然后点击下一finally




在安装过程中会弹出提示,看提示,选择允许即可,重启eclipse,然后就可以创建Python项目


4.PyDevfor eclipse相关设置和使用


step17:启动eclipsewindow→preference→ Interpreters,设置python解释器:点击AdvancedAuto-Config,它会显示

ubuntu中所有可以python解释器,选择合适的即可




step18:创建项目,选择DevProject即可



输入项目名称,选择“Create‘src’ folder and add it to thePYTHONPATH”这个选项即可。到此为

止,深度学习环境和开发工具配置完成。

展开阅读全文

没有更多推荐了,返回首页