数据结构34:谢尔排序

57 篇文章 12 订阅
47 篇文章 12 订阅

目录

 

一、谢尔排序shell sort

二、谢尔排序:思路

三、算法分析


一、谢尔排序shell sort

我们注意到,对于插入排序的比对次数,在最好的情况下是O(n),这种情况发生在列表已经是有序的情况下,实际上,列表越是接近于有序,插入排序的比对次数就越少

在这种情况下,谢尔排序以插入排序为基础,对无序表进行“间隔”划分子列表,每个子列表都执行插入排序。

随着子列表的数量越来越少,无序表的整体越接近于有序,从而减少整体排序的比对次数。

间隔为3的子列表,子列表分别插入排序后的整体状况更接近有序。

二、谢尔排序:思路

最后一趟是标准的插入排序,但是由于前面几趟已经将列表处理到接近有序,这一趟仅需少数几次移动即可完成。

子列表的间隔一般从n/2开始,每趟倍增:n/4,n/8,...,直到1

代码:

def shellSort(alist):
    sublistcount = len(alist) // 2
    while sublistcount > 0:
        for startpos in range(sublistcount):
            gapInsertionSort(alist, startpos, sublistcount)
        sublistcount = sublistcount // 2


def gapInsertionSort(alist, start, gap):
    for i in range(start+gap, len(alist), gap):
        currentvalue = alist[i]
        pos = i

        while pos >= gap and alist[pos-gap] > currentvalue:
            alist[pos] = alist[pos-gap]
            pos = pos -gap
        alist[pos] = currentvalue

三、算法分析

粗看上去,谢尔排序以插入排序为基础,可能并不会比插入排序好。

但是由于每趟都使得列表更加接近于有序,这个过程会减少很多原先需要的“无效”的比对。

如果将间隔保持在2^k-1(1,3,5,7等),谢尔排序的时间复杂度为O(n^(3/2))。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值