特征值和特征向量

本文介绍了特征值和特征向量的概念,针对给定矩阵A,特征向量经过矩阵作用后保持方向不变。特征值的求解通过特征方程进行,性质包括:矩阵有n个特征值,特征值之和等于迹,乘积等于行列式。通过实例展示了对称阵、置换阵和旋转矩阵的特征值与特征向量的计算,强调了特征值不满足线性关系或乘积关系,以及重复特征值的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征值(eigenvalues)和特征向量(eigenvectors)都是对方阵而言的,给定矩阵A,它就像某个函数一样作用在向量x上,从而得到新向量Ax,我们感兴趣的是矩阵作用后那些新向量Ax与原向量x方向一致的向量,对多数向量而言,Ax是不同方向的,但有些特殊向量被矩阵作用后是跟x平行的,用式子来表示就是 为特征值,x为A的特征向量,所谓方向相同可表示方向相同,也可表示方向相反, 允许取负值或0,甚至可以是复数。

求解特征值和特征向量

进行移项得到 ,这个式子说明对于不为零向量的x,系数矩阵必须满足是奇异的,奇异阵行列式为0,则

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值