引言:我们来看一下不等式与不等式组的含参问题,这种题目出错率非常高,需要总结题型。我们现在来了解一下含参问题吧。
一、一元一次不等式的含参问题
含参一元一次不等式:顾名思义,指的是一个一元一次不等式中含了几个参数,例如,这里k是参数。
1.解一元一次含参不等式
结合历年月考,经常考这种解含参不等式的问题,我们来看一下怎么解。
对于含字母系数的不等式ax<b(先解成这样的形式),未知数含有字母时需分类讨论。
- 当a>0时,不等式的解集为
;
- 当a<0时,不等式的解集为
;
- 当a=0时,若b>0,则不等式的解集为任意数;若b<=0,则这个不等式无解。
如果单纯这样说大家可能不懂,我们来看一道例题:
解关于x的不等式:
答案:我们可以像上面一样枚举。
2、根据不等式的解集求参数
在解这种问题时,我们要先化成ax<b的形式,然后观察求解,怎么做呢?我们来看一道例题
若关于x的不等式的解集是x<3,则a=?
分析:我们最终可以化成的式子,题目说x<3,它们两个式子的解集是相同的,所有-a-2=3,解得x=-5。
3、根据不等式的解集求参数范围
我们在解这种问题时,要先解不等式,化成ax<b的形式,这样解就是,再根据题目条件求。
例题:
如果根据关于x的不等式的解集为
,则a的取值范围是?
分析:我们把不等式同时除以1-a,就是,不等式方向不变,说面1-a>0,那么a<-1。
4、根据不等式的解集关系求参数范围
遇到这种问题要把两个不等式都化成ax<b的形式,在数轴上画出解集 ,再根据关系求解
例题:
已知关于x的不等式的解都是不等式
的解,则a的取值范围是()
A.a<=5 B.a<5 C.a<=3 D.a>5
分析:解第一个不等式,得,第二个不等式得
。画图略。我们根据图可以得出
,解得a<=5,选A。
5.不等式的整数解问题
这种问题分3步解决
- 解不等式
- 在数轴上画出解集,并分析出大概范围
- 根据题目确定范围,再解决
例题:
已知关于x的不等式的最小整数解为2,则实数m的取值范围是?
答案:
课后作业:
1.若是关于x的一元一次不等式,则m的值为()
A.0 B.±1 C.-1 D.1
2.若关于x的不等式mx-n>0的解集是,则关于x的不等式(m+n)x>n-m的解集为()
A. B.
C.
D.
3.若关于x的不等式5x+m>=7x只有四个正整数解,则m的取值范围是()
A.m<10 B.m>=8 C.8<=m<=11 D.8<=m<10
大家把答案发到评论区,我会检查哦~
因为时间问题,小编只能写这些,明天蹲等后续,大家能不能用小手点个赞呢