初中数学:不等式与不等式组(2)

引言:我们来看一下不等式与不等式组的含参问题,这种题目出错率非常高,需要总结题型。我们现在来了解一下含参问题吧。

一、一元一次不等式的含参问题

含参一元一次不等式:顾名思义,指的是一个一元一次不等式中含了几个参数,例如2x+kx>20,这里k是参数。

1.解一元一次含参不等式

结合历年月考,经常考这种解含参不等式的问题,我们来看一下怎么解。

对于含字母系数的不等式ax<b(先解成这样的形式),未知数含有字母时需分类讨论。

  1. 当a>0时,不等式的解集为x<\frac{b}{a}
  2. 当a<0时,不等式的解集为x>\frac{b}{a}
  3. 当a=0时,若b>0,则不等式的解集为任意数;若b<=0,则这个不等式无解。

如果单纯这样说大家可能不懂,我们来看一道例题:

解关于x的不等式:mx+3<-6-nx

答案:我们可以像上面一样枚举。

2、根据不等式的解集求参数 

在解这种问题时,我们要先化成ax<b的形式,然后观察求解,怎么做呢?我们来看一道例题

若关于x的不等式-x>a+2的解集是x<3,则a=?

分析:我们最终可以化成x<-a-2的式子,题目说x<3,它们两个式子的解集是相同的,所有-a-2=3,解得x=-5。

3、根据不等式的解集求参数范围

我们在解这种问题时,要先解不等式,化成ax<b的形式,这样解就是x<\frac{b}{a},再根据题目条件求。

例题:

如果根据关于x的不等式(1-a)x \ge 1的解集为x \ge \frac{1}{1-a},则a的取值范围是?

分析:我们把不等式同时除以1-a,就是x \ge \frac{1}{1-a},不等式方向不变,说面1-a>0,那么a<-1。

4、根据不等式的解集关系求参数范围

遇到这种问题要把两个不等式都化成ax<b的形式,在数轴上画出解集 ,再根据关系求解

例题:

已知关于x的不等式\frac{4x+a}{3}>1的解都是不等式\frac{2x+1}{3}>0的解,则a的取值范围是()

A.a<=5    B.a<5     C.a<=3     D.a>5

分析:解第一个不等式,得x>\frac{3-a}{4},第二个不等式得x>- \frac{1}{2}。画图略。我们根据图可以得出- \frac{1}{2} \le - \frac{3-a}{4},解得a<=5,选A。

5.不等式的整数解问题

这种问题分3步解决

  1. 解不等式
  2. 在数轴上画出解集,并分析出大概范围
  3. 根据题目确定范围,再解决

例题:

已知关于x的不等式2x-m+1>0的最小整数解为2,则实数m的取值范围是?

答案:

课后作业:

1.若(m+1)x^{|m|}-5>0是关于x的一元一次不等式,则m的值为()

   A.0   B.±1  C.-1  D.1

2.若关于x的不等式mx-n>0的解集是x<\frac{1}{3},则关于x的不等式(m+n)x>n-m的解集为()

A.x<- \frac{1}{2}     B.x>- \frac{1}{2}   C.x<\frac{1}{2}  D.x> \frac{1}{2}

3.若关于x的不等式5x+m>=7x只有四个正整数解,则m的取值范围是()

A.m<10    B.m>=8   C.8<=m<=11  D.8<=m<10

大家把答案发到评论区,我会检查哦~

因为时间问题,小编只能写这些,明天蹲等后续,大家能不能用小手点个赞呢

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值