不等号:
不等式的性质:不等号两边加上或减去同一个数,不等号方向不变;不等式两边同时乘上或除以同一个正数,不等号方向不变;不等号两边同时乘上或除以同一个负数,不等号要改变方向
一、不等式基础知识
1、一元一次不等式的基础知识
一元一次不等式的定义:类似于一元一次方程,含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式。
例题:
下列式子中,一元一次不等式有()
① ②
③
④
⑤
A.2个 B.3个 C.4个 D.5个
答案:第一个有二次项,不是;第二个有两个未知数,不是;第三个是分式,不是;其余都是,选A。
一元一次不等式的标准形式:经过去分母、移项等操作后,能化成ax<b或ax>b的形式(其中a不等于0)
例题:
若是关于x的一元一次不等式,则m的值为()
A.-1 B.-3 C.-2 D.-3或-1
答案:因为这是一个一元一次不等式,所以的值为1,那么m可以为-3也可以为-1。如果m=-1,那么系数m+1就会为0,不存在x,不是一元一次不等式。所以只能是B
2、解一元一次不等式
首先,我们要了解怎么样解一元一次不等式:
去分母——去括号——移项——合并同类项——系数化成1
我们在来看一下每一个数在数轴上怎么表示解集
例题:
解不等式。
答案:
二、一元一次不等式组
1.定义
一元一次不等式组:含有相同未知数的几个一元一次术等式所组成的不等式组,叫做一元一次不等式组。
例题:
下列是一元一次不等式组的是()
A. B.
C. D.
答案:B出现了二次方,C是分式,D有两个未知数。只有A符合。
一元一次不等式组的解集:几个一元一次不等式解集的公共部分,叫做由它们所组成的一元一次不等式组的解集,当几个不等式的解集没有公共部分时,称这个不等式组无解(解集为空集).
2.解一元一次不等式组
步骤:
1.求出这个不等式组中各个不等式的解集;
2.利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集。
不等式组解集的四种基本类型:
例题:
1.
答案:第一个不等式的解为x大于等于2,第二个为x小于3,解集为。只有A符合条件。
2.
答案:
今天我们所展示的只是基础知识,下次更新:含参不等式与不等式组
看在小编这么辛苦的份上,能不能花一点时间给我点个赞呢~