初中数学:不等式与不等式组(一)

不等号:= > < \ge \le

不等式的性质:不等号两边加上或减去同一个数,不等号方向不变;不等式两边同时乘上或除以同一个正数,不等号方向不变;不等号两边同时乘上或除以同一个负数,不等号要改变方向

一、不等式基础知识

1、一元一次不等式的基础知识

一元一次不等式的定义:类似于一元一次方程,含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式。

例题:

下列式子中,一元一次不等式有()

x+2x^2>1    ②2x-y>0   ③\frac{1}{x-1}-1>0   ④2x-3>5   ⑤\frac{x-2}{3}>1

       A.2个      B.3个    C.4个   D.5个

答案:第一个有二次项,不是;第二个有两个未知数,不是;第三个是分式,不是;其余都是,选A。

一元一次不等式的标准形式:经过去分母、移项等操作后,能化成ax<b或ax>b的形式(其中a不等于0)

例题:

(m+1)x^{|m+2|}+4<0是关于x的一元一次不等式,则m的值为()

    A.-1      B.-3     C.-2     D.-3或-1

答案:因为这是一个一元一次不等式,所以|m+2|的值为1,那么m可以为-3也可以为-1。如果m=-1,那么系数m+1就会为0,不存在x,不是一元一次不等式。所以只能是B

2、解一元一次不等式

首先,我们要了解怎么样解一元一次不等式:

去分母——去括号——移项——合并同类项——系数化成1

我们在来看一下每一个数在数轴上怎么表示解集

例题:

解不等式\frac{2x+1}{4}\le\frac{x-1}{3}-1

答案:

二、一元一次不等式组

1.定义

一元一次不等式组:含有相同未知数的几个一元一次术等式所组成的不等式组,叫做一元一次不等式组。

例题:

下列是一元一次不等式组的是()

A.\begin{cases} x + y < 3 \\ x - 3 > -8 \\ \end{cases}         B.\begin{cases} x ^ 2 + x >3 \\ x - 2 > 0 \\ \end{cases}

C.\begin{cases} x + y \geq 5 \\ \frac{1}{x}>5 \\ \end{cases}           D.\begin{cases} x + y \geq 5 \\ 2x - y < 3 \\ \end{cases}

答案:B出现了二次方,C是分式,D有两个未知数。只有A符合。

一元一次不等式组的解集:几个一元一次不等式解集的公共部分,叫做由它们所组成的一元一次不等式组的解集,当几个不等式的解集没有公共部分时,称这个不等式组无解(解集为空集).

2.解一元一次不等式组

步骤:

1.求出这个不等式组中各个不等式的解集;

2.利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集。

不等式组解集的四种基本类型:

例题:

1.

答案:第一个不等式的解为x大于等于2,第二个为x小于3,解集为-2\le x < 3。只有A符合条件。 

2.

 答案:

今天我们所展示的只是基础知识,下次更新:含参不等式与不等式组 

看在小编这么辛苦的份上,能不能花一点时间给我点个赞呢~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值