Pytorch动手学深度学习打卡笔记

第一次打卡

  1. softmax回归,解决的是分类问题
  2. 图片在神经网络当中的输入是拉平了输入,即(256,256)大小的图片,那么输入的神经元大小是256*256个
  3. 循环神经网络rnn,是解决文本、视频等有时序关系的问题

第二次打卡
理论的学习和代码实现是2个主要部分,在看代码学习的过程中常常反复查询pytorch以及Python的一些主要且常用的函数,做个整理笔记,以便日后复习或使用。

  1. detach()
    是将网络中的参数分离出来使用,一般在测试集数据时使用
  2. pd.get_dummies(all_features, dummy_na=True)
    独热编码方式,即将all_featrues里的离散型特征数据编码为0-1形式,dummy_na为True则将nan类型的也视为正常
  3. view(-1,1)
    可以将数据整成一列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值