第一次打卡
- softmax回归,解决的是分类问题
- 图片在神经网络当中的输入是拉平了输入,即(256,256)大小的图片,那么输入的神经元大小是256*256个
- 循环神经网络rnn,是解决文本、视频等有时序关系的问题
第二次打卡
理论的学习和代码实现是2个主要部分,在看代码学习的过程中常常反复查询pytorch以及Python的一些主要且常用的函数,做个整理笔记,以便日后复习或使用。
- detach()
是将网络中的参数分离出来使用,一般在测试集数据时使用 - pd.get_dummies(all_features, dummy_na=True)
独热编码方式,即将all_featrues里的离散型特征数据编码为0-1形式,dummy_na为True则将nan类型的也视为正常 - view(-1,1)
可以将数据整成一列