最小二乘法

本文深入探讨了最小二乘法的基本原理,包括其一般形式、代数法解法及矩阵法解法,并讨论了该方法的局限性及其适用场景。最小二乘法是一种常用的数据拟合方法,旨在通过最小化观测值与理论值之间的平方差来优化模型参数。
摘要由CSDN通过智能技术生成

一般形式:
目标函数 = Σ(观测值-理论值)2(平方)

观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。

最小二乘法的代数法解法

在这里插入图片描述

最小二乘法的矩阵法解法
在这里插入图片描述

最小二乘法的局限性和适用场景

在这里插入图片描述

原文链接:https://www.cnblogs.com/pinard/p/5976811.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值