概念:最小二乘法是一种熟悉而优化的方法。主要是通过最小化误差的平方以及最合适数据的匹配函数。
作用:(1)利用最小二乘法可以得到位置数据(这些数据与实际数据之间误差平方和最小)(2)也可以用来曲线拟合
实例讲解:有一组数据(1,6),(3,5),(5,7),(6,12),要找出一条与这几个点最为匹配的直线 : y = A + Bx
有如下方程:
6 = A + B
5 = A + 3B
7 = A + 5B
12 = A + 6B
很明显上面方程是超定线性方程组,要使左边和右边尽可能相等;采用最小二乘法:
L(A,B)=[6-(A + B)]^2 + [5-(A + 3B)]^2 + [7-(A + 5B)]^2 +[12-(A + 6B)]^2使得L的值最小:这里L是关于A,B的函数;那么我们可以利用对A,B求偏导,进而求出A,B的值使得Lmin
最小二乘法原理理解
最新推荐文章于 2025-03-17 14:54:01 发布