最大似然估计

利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值
例如:一个麻袋里有白球与黑球,但是我不知道它们之间的比例,那我就有放回的抽取10次,结果我发现我抽到了8次黑球2次白球,我要求最有可能的黑白球之间的比例时,就采取最大似然估计法:

我假设我抽到黑球的概率为p,那得出8次黑球2次白球这个结果的概率为:
P(黑=8)=p8*(1-p)2,现在我想要得出p是多少啊,很简单,使得P(黑=8)最大的p就是我要求的结果,接下来求导的的过程就是求极值的过程啦。

为什么要ln一下呢,这是因为ln把乘法变成加法了,且不会改变极值的位置(单调性保持一致嘛)这样求导会方便很多~

设总体X 的概率密度为
已知 X1,X2…Xn是样本观测值,求θ的极大似然估计

要得到 X1,X2…Xn这样一组样本观测值的概率是 P{x1=X1,x2=X2,…xn=Xn}=
f(X1,θ)f(X2,θ)…f(Xn,θ) 然后我们就求使得P最大的θ就好啦,一样是求极值的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值