利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值
例如:一个麻袋里有白球与黑球,但是我不知道它们之间的比例,那我就有放回的抽取10次,结果我发现我抽到了8次黑球2次白球,我要求最有可能的黑白球之间的比例时,就采取最大似然估计法:
我假设我抽到黑球的概率为p,那得出8次黑球2次白球这个结果的概率为:
P(黑=8)=p8*(1-p)2,现在我想要得出p是多少啊,很简单,使得P(黑=8)最大的p就是我要求的结果,接下来求导的的过程就是求极值的过程啦。
为什么要ln一下呢,这是因为ln把乘法变成加法了,且不会改变极值的位置(单调性保持一致嘛)这样求导会方便很多~
设总体X 的概率密度为
已知 X1,X2…Xn是样本观测值,求θ的极大似然估计
要得到 X1,X2…Xn这样一组样本观测值的概率是 P{x1=X1,x2=X2,…xn=Xn}=
f(X1,θ)f(X2,θ)…f(Xn,θ) 然后我们就求使得P最大的θ就好啦,一样是求极值的过程。