[原创]数字信号处理中的卷积网络深度学习猜想(1) - 信号主周期估计算法

本文提出了一种结合深度学习中的卷积网络思想改进信号处理算法,特别是针对呼吸信号的主周期估计。通过全尺度卷积和非线性处理核,该方法能更好地捕捉信号特征,减少线性运算的局限性。实验结果显示,算法在处理含有倍频干扰的信号时,能有效识别主周期。
摘要由CSDN通过智能技术生成

转载请注明出处,Writer:Zhonlihao钟硕 @ 20190713

***注意!本文只是猜想,请勿过于认真要作者给出与深度学习的必要联系***

https://blog.csdn.net/xeonmm1

引言

       这是一篇计算机学与信号处理跨界借鉴的文章,涉及电信算法领域,以下内容尽可能不贴图讲解,相关人士老司机可以继续阅读,适逢深度学习的大热,我花了点基本的时间了解深度学习的基本算法构建和深度学习中一些关键的要素。暂时来看,实信号处理还没有相关的深度学习算法,因为信号的组织形式与图像是不相关,但是根据图像能够做深度学习这一突破的前提,证明信号处理里面也可能有机会进行相关算法操作。

       首先简单的讲解下图像深度学习,其基本的形式就是一个方形滤波器核对整幅图像进行卷积运算,并提取一些信息到后端的MLP全连接神经网络进行特征识别,整个过程是end to end的,不需要人为去自己提取特征,非常的方便,但是代价也是显而易见的就是运算量基本就是各种循环消耗,需要增加计算量,所以现在我们可以来归纳一下整个深度学习算法的特点:

1.进行反复循环的卷积运算:这个操作能够遍历所有的数据位置,综合提取特征;

2.非线性核及其饱和输出:卷积核和激活函数的计算能够使线性输出变为非线性输出,具备遇到特征就激活的能力,本质上是把足够量的特征用饱和状态1和0激活到下一层再进行更复杂的分析操作;

3.多层全连接神经网络:提供丰富的多维空间学习特征;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值