神经网络 | 卷积神经网络
LeeLeeLee钟硕
微电子中的算法人,vivo-iqoo体感操控设计师(2022),来交个朋友
展开
-
[神经网络]Matlab神经网络原理6.6.1节 - 使用BP网络通过身高体重分类性别(批量和工具箱)
main_script_feedforwardnet.m 工具箱代码clear;close all;clc;[data, label] = getdata('student.xls');[traind,trainl,testd,testl] = divide(data,label);%% 初始化网络rng('default');rng(0);net = feedforward...原创 2018-11-03 20:57:31 · 3415 阅读 · 1 评论 -
[原创]数字信号处理中的卷积网络深度学习猜想(2) - 信号主周期估计算法 - 一种快速实现
转载请注明出处,Writer:Zhonlihao钟硕 @ 20190713https://blog.csdn.net/xeonmm1全尺度卷积算法的时间复杂度全尺度卷积虽然有非常强的细节提取能力,但其是以大量增加运算量为代价的,下面的伪代码给出了其基本的运算过程:for i = 尺度遍历 n for j = 时域遍历 k for m = 特征遍...原创 2019-07-14 09:25:33 · 372 阅读 · 0 评论 -
[原创]数字信号处理中的卷积网络深度学习猜想(1) - 信号主周期估计算法
转载请注明出处,Writer:Zhonlihao钟硕 @ 20190713***注意!本文只是猜想,请勿过于认真要作者给出与深度学习的必要联系***https://blog.csdn.net/xeonmm1引言 这是一篇计算机学与信号处理跨界借鉴的文章,涉及电信算法领域,以下内容尽可能不贴图讲解,相关人士老司机可以继续阅读,适逢深度学习的大热,我花了点基本的时间了解深度...原创 2019-07-13 13:52:59 · 1420 阅读 · 0 评论 -
[深度学习]卷积神经网络CNN - 一张图理解滤波器/层数/深度
1.单个卷积滤波器的尺寸一般为3x3 或 5x5;如上图所示的kernel2.滤波器的层数与图像输入的色彩层有关 如上图所示层数为33.滤波器的深度是指布设多少个卷积特征提取器,越深的深度有利于多角度提取相关识别的特征,如上图所示深度为2最终经过合成后特征的图层的个数与上一级的卷积深度一致,从输入的图层个数 转化为特征层的个数;...原创 2019-05-04 12:24:46 · 5261 阅读 · 0 评论 -
[深度学习]Tensorflow教学 - 手写数字识别例程MNIST代码实现
import tensorflow as tfimport osimport urllibimport tensorflow.examples.tutorials.mnist.input_data as input_data# from tensorflow.examples.tutorials.mnist import input_data# 手动从Lecun乐村大牛的网站下载图片...转载 2019-05-04 11:48:15 · 560 阅读 · 0 评论 -
[深度学习]Tensorflow实现Label一定范围内损失为0的代码实现
介绍:在很多应用中我们不一定要回归到某个Label [a],而是a的某个范围[a-b,a+b]内,均可认为训练成功,下面给出实现代码import tensorflow as tfimport numpy as np# zhonglihao 2019.04# 正负1范围没有lossoutput = [1.0,2.0,3.0,4.0,5.0,6.0]label = [3.5,3.5...原创 2019-04-23 10:01:29 · 456 阅读 · 0 评论 -
[深度学习]使用Tensorflow实现一个简单异或逻辑的学习
import tensorflow as tfimport numpy as np# zhonglihao 2019.04# 训练集x_train = [[0.0,0.0],[0.0,1.0],[1.0,0.0],[1.0,1.0]]y_train = [[1],[0],[0],[1]]# 网络参数 输入向量为2 隐藏层为4个cell 输出1/0单个节点# zhongliha...原创 2019-04-22 16:01:00 · 506 阅读 · 0 评论 -
[神经网络]Matlab神经网络工具箱提取网络参数进行实现的注意事项
1.将输入特征归一化到浮点[0,1]区间;2.譬如有4个特征[x1 x2 x3 x4]必须对角点进行封边以防止Matlab归一化时将幅度改变,所以应加入训练集两个点[0 0 0 0] =正例,[1 1 1 1] =反例这样;3.注意训练器图示的激活函数,有变换的为sigmoid或tanh网络,一条直线为线性输出以0为简单的分界点;4.从net.IW /net.LW /ne...原创 2019-03-05 09:52:15 · 1719 阅读 · 1 评论 -
[神经网络]Matlab神经网络的激活函数名称
原创 2019-01-19 11:45:34 · 5166 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理6.5.3节 - 使用newff逼近二次函数
clc,clear;close all;x = -4:.5:4;y = x.^2 - x;net = newff(minmax(x),minmax(y),10); % 创建一个反向传播学习网络 10个节点net = train(net,x,y);xx = -4:.2:4;yy = net(xx);plot(x,y,'o-',xx,yy,'*-');title('新版newf...原创 2018-11-03 00:11:46 · 591 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理5.6.2节 - 线性感知器实现异或
%% 清理close all;clear,clc;%% 定义变量P1 = [0,0,1,1;0,1,0,1]; % 4点坐标p2 = P1(1,:).^2; % x轴平方扩展p3 = P1(1,:).*P1(2,:); % 两轴相乘扩展p4 = P1(2,:).^2; % y轴平方扩展P = [P1(1,:);p2;p3;p4;P1(2,:)] %...原创 2018-11-01 23:20:47 · 502 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理5.5.1节 - 感知器线性回归(工具箱)
clear;clc;clear all;% 构造直线 带噪声x = -5:5;y = 3 * x - 7;randn('state',2);y = y + randn(1,length(y))*1.5;plot(x,y,'o');% 训练P = x; % 输入T = y; % 期望net = newlind(P,T); % 训练网络new_x = -5:.2:5;n...原创 2018-11-01 23:07:20 · 369 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理4.5节 - 线性分类学习(批量)
close all;% 深度神经网络matlab书本的4.5节代码% 用于线性平面分类学习% 由zhonglihao加上详细的注释%% 配置区n = 0.2; % 学习率w = [0, 0, 0]; % 权重声明P = [-9, 1, -12, -4, 0, 5;... 15, -8, 4...原创 2018-11-01 23:00:33 · 294 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理4.5.2节 - 线性分类学习(工具箱)
clear;clc;close all;% 创建感知器(线性)net = newp([-20,20;-20,20],1);% 定义输入训练向量P = [-9, 1, -12, -4, 0, 5;... 15, -8, 4, 5, 11, 9];% 期望输出T = [0,1,0,0,0,1]; % 训练net = train(net,P,T);% 输入训练数据...原创 2018-11-01 22:54:13 · 309 阅读 · 0 评论 -
[神经网络]Matlab神经网络原理6.6.2节 - 使用BP网络实现异或(工具箱)
clc,clear,close all;% 异或四点向量traind = [0,0,1,1;0,1,0,1];trainl = [0,1,1,0];% 创建一个前向BP网络 节点为2net = feedforwardnet(2);net.divideFcn=''; % **关键,关闭网络内部的训练集与结果错开的功能%% Trainnet = train(net,traind...原创 2018-11-03 21:34:12 · 1340 阅读 · 1 评论 -
[原创]数字信号处理中的卷积网络深度学习猜想(3) - 信号动态周期包络算法
基本原理请参考这篇文章:https://blog.csdn.net/xeonmm1/article/details/95735261这次我们希望通过全尺度卷积算法实现一个随机信号的包络计算,包络计算的难题是:如果使用幅度逼近,则可能缺失时域,如果使用时域逼近,则可能缺失幅度,之所以出现这种情况是因为随机信号的信号成分不是固定的,里面包含了从低到高的频率,和不同的幅度信号,为了尽可能缓...原创 2019-07-23 17:50:16 · 601 阅读 · 0 评论