Python实现常用的假设检验

本文详细介绍了如何使用Python进行常见的假设检验,包括体温是否服从正态分布、异常数据检测、性别间体温差异显著性检验以及体温与心率的相关性分析。通过Statsmodels和Scipy库进行统计建模和推断,提供了具体的操作步骤和实践练习。
摘要由CSDN通过智能技术生成

开门见山。

这篇文章,教大家用Python实现常用的假设检验!

在这里插入图片描述

服从什么分布,就用什么区间估计方式,也就就用什么检验!

比如:两个样本方差比服从F分布,区间估计就采用F分布计算临界值(从而得出置信区间),最终采用F检验。

在这里插入图片描述

在这里插入图片描述

建设检验的基本步骤:

在这里插入图片描述

前言

假设检验用到的Python工具包

•Statsmodels是Python中,用于实现统计建模和计量经济学的工具包,主要包括描述统计、统计模型估计和统计推断

•Scipy是一个数学、科学和工程计算Python工具包,主要包括统计,优化,整合,线性代数等等与科学计算有关的包

导入数据

python学习交流Q群:906715085####
from sklearn.datasets import load_iris
import numpy as np
#导入IRIS数据集
iris = load_iris()
iris=pd.DataFrame(iris.data,columns=
['sepal_length','sepal_width','petal_legth','petal_width'])print(iris)

一个总体均值的z检验

Python学习交流Q群:906715085###
np.mean(iris['petal_legth'])
'''
原假设:鸢尾花花瓣平均长度是4.2
备择假设:鸢尾花花瓣平均长度不是4.2
'''
import statsmodels.stats.weightstats
z, pval = 
statsmodels.stats.weightstats.ztest(iris
['petal_legth'], value=4.2)
print(z,pval)

'''
P=0.002 <5%, 拒绝原假设,接受备则假设。
'''

一个总体均值的t检验

import scipy.stats
t, pval = scipy.stats.ttest_1samp(iris
['petal_legth'], popmean=4.0)print(t, pval)
'''
P=0.0959 > 5%, 接受原假设,即花瓣长度为4.0。
 '''

模拟双样本t检验

#取两个样本
iris_1 = iris[iris.petal_legth >= 2]
iris_2 = iris[iris.petal_legth < 2]
print(np.mean(iris_1['petal_legth']))
print
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值