中途相遇法,这题目总结后我感觉和第一篇博客很像,他们都取了中间,也许这就是二分的魅力吧
这题题意就是从ABCD四个集合中选四个元素使他们的和为0
题意很简单,但是实现起来很容易超时,不能一个一个枚举
然后就想到了枚举两个,那么新生成EF两个集合大小为n方,然后如何查找?
最容易想到的就是用map标记,但汝佳说了这会超时,我不信,试了一发,超时了!!!
除了用map还能用什么呢,联想到之前那个UVA对称的题目,我们可以sort一下,然后查找e的相反数时候,二分查找-e,记住,找到还不行,有可能存在多个-e.所以upper_bound-lower_bound 就可以了,然后就这样过了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<stack>
#include<map>
#include<queue>
#include<vector>
using namespace std;
int t,n,a,b,c,d,kase,cnt;
int num[4][4040],sum1[16000040],sum2[16000040];
map<int,int> list;
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
kase=0;
cin>>t;
while(t--){
memset(num,0,sizeof num);
memset(sum1,0,sizeof sum1);
memset(sum2,0,sizeof sum2);
cnt=0;
if(kase++) cout<<"\n";
cin>>n;
for(int i=0;i<n;i++)
scanf("%d%d%d%d",&num[0][i],&num[1][i],&num[2][i],&num[3][i]);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
sum1[i*n+j]=num[0][i]+num[1][j];
sum1[i*n+j]=-sum1[i*n+j];
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
sum2[i*n+j]=num[2][i]+num[3][j];
}
}
sort(sum1,sum1+n*n);
sort(sum2,sum2+n*n);
int end=n*n,pos1=0,pos2=0;
for(int i=0;i<end;i++){
pos1 = lower_bound(sum2+pos1,sum2+end,sum1[i]) -sum2;
pos2 = upper_bound(sum2+pos1,sum2+end,sum1[i]) -sum2;
if(pos1==end) break;
cnt+=pos2-pos1;
pos1=max(pos1-1,0);
}
cout<<cnt<<endl;
}
return 0;
}