自学人工智能之攻克数学篇,AI入门其实并不难!

毕业这么多年,你是否一提到大学高数还依旧很烦躁?

想投身AI圈,看到搞算法还需要掌握数学,你是否突然间就头痛了呢?

人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:

  1. 线性代数:如何将研究对象形式化?

  2. 概率论:如何描述统计规律?

  3. 数理统计:如何以小见大?

  4. 最优化理论:如何找到最优解?

  5. 信息论:如何定量度量不确定性?

  6. 形式逻辑:如何实现抽象推理?

    ……

有一点是肯定的,绝大部分理工科,如果从研究层面来讲,数学都是要求非常高的。如果是做AI方向的程序员的话,要求就不是很高了。

对于AI方向的程序员而言,AI领域的所有方向都会用到线性代数和概率论,而离散数学,微积分等,用是会用到,但是以基础应用为主,并不要求非常难,某个函数你知道怎么积分就行。但是概率论非常非常重要,基本上人工智能里面的“智能”就靠概率来实现了哦。

那咱们来看看,大学学的数学你还记得啥,立马开启虐心模式吧!!!~

01

虐心一:线性代数

看看你答对了多少:

  1. D   2.  C  3.  B   4.  B

心痛没?心痛没?必须说第三遍,痛心没?

这才第一弹,还有第二弹哦,来来来,继续虐起来!!!

02

虐心二:概率论

先来看看答案吧

1.  C   2.  C   3.  D   4.  D

是不是很郁闷?都开始怀疑自己了?那几年上大学究竟在干嘛?是读了个假大学吗?

往事开始一幕幕的映入眼帘:

当年数学挂科,补考或者大四清考,眼巴巴请求老师救救你……

当年通宵备考背题,好不容易数学考及格,考完就早拜拜了……

当年数学还可以,甚至是高分者,但是现在都要感概已还给老师了……

AI我想你,但是我又担心,我没能力爱你!!!

不要着急,看过来哦!基于AI实际项目算法中数学能力需求,我们为忘记数学想学AI的你精心准备了一套AI数学基础教程资料

扫码添加,免费获取超全视频资料

备注【AI数学】领取

开启月光宝盒,重拾当年‘美好’。一直担忧自己数学不好,迟迟未行动的你,想学AI无需重读高数,只需跟随课件恢复数学记忆。大家扫码添加即可领取AI数学基础教程资料哦~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当然!下面是一个简单的自学人工智能的路线图供您参考: 1. 数学基础:学习线性代数、概率论和统计学。这些是人工智能的基础,对于理解算法和模型非常重要。 2. 编程基础:学习一种或多种编程语言,如Python或Java。熟悉基本的编程概念和数据结构。 3. 机器学习:了解机器学习的基本概念和算法,如回归、分类、聚类等。掌握常见的机器学习库,如scikit-learn。 4. 深度学习:学习神经网络和深度学习的原理。了解常见的深度学习框架,如TensorFlow和PyTorch。 5. 自然语言处理:了解自然语言处理的基本技术,如文本分类、命名实体识别等。掌握常见的自然语言处理库,如NLTK和spaCy。 6. 计算机视觉:学习计算机视觉的基本概念和技术,如图像分类、目标检测等。熟悉常见的计算机视觉库,如OpenCV。 7. 强化学习:了解强化学习的原理和算法,如Q-learning、深度强化学习等。掌握常见的强化学习库,如OpenAI Gym。 8. 部署和优化:学习如何将模型部署到生产环境,并进行性能优化和调试。 9. 实践项目:完成一些实际的人工智能项目,如图像分类、情感分析等。这将帮助您巩固所学知识,并提升实践能力。 请注意,这只是一个简单的路线图,您可以根据自己的兴趣和需求进行调整。此外,不断阅读相关文献、参加在线课程和加入社区讨论也是自学人工智能的有效方式。祝您在自学人工智能的过程中取得成功!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值