数学笔记

求极限:

关于求 0 0 \frac 00 00形:

上下两个式子取次数最小的,然后化简。

不可搞的一般求泰勒展开,取泰勒展开中最小的项来搞。

记一些基本的泰勒展开:

一般要能求导才行,所以不是很能求导的东西我不是很会。

泰勒展开的主要思想就是希望一阶导在某个位置求的值相同,二阶导在某个位置求的值相同…, n n n阶导在某个位置求的值相同。

比如 e x e^x ex,一般选择在 x = 0 x=0 x=0的位置进行泰勒展开,这样子如果求导之后每一次就只用关注常数项:

首先我们有一个多项式: f ( x ) = c 0 + c 1 x + c 2 x 2 + . . . f(x)=c_0+c_1x+c_2x^2+... f(x)=c0+c1x+c2x2+...

首先 x = 0 x=0 x=0时, e x = 1 e^x=1 ex=1,因此 c 0 = 1 c_0=1 c0=1

e x e^x ex的导数就是 e x e^x ex,而此时多项式变为: f ′ ( x ) = c 1 + 2 c 2 x + . . . f'(x)=c_1+2c_2x+... f(x)=c1+2c2x+...,因此 c 1 = 1 c_1=1 c1=1

往下推你会得到: c n = 1 n ! c_n=\frac 1{n!} cn=n!1

因此: f ( x ) = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . f(x)=1+x+\frac 1{2!}x^2+\frac 1{3!}x^3+... f(x)=1+x+2!1x2+3!1x3+...

同时可以得到:
e = ∑ i = 1 1 i ! e=\sum_{i=1}\frac 1{i!} e=i=1i!1
再比如: 2 x 2^x 2x我们将他泰勒展开:

我们有一个多项式: f ( x ) = c 0 + c 1 x + c 2 x 2 + . . . f(x)=c_0+c_1x+c_2x^2+... f(x)=c0+c1x+c2x2+...

可得 c 0 = 1 c_0=1 c0=1

2 x 2^x 2x的导数是 ln ⁡ 2 ( 2 x ) \ln2(2^x) ln2(2x),因此 c 1 = ln ⁡ 2 c_1=\ln2 c1=ln2

往下推可以得到: c n = ( ln ⁡ 2 ) n n ! c_n=\frac {(\ln 2)^n}{n!} cn=n!(ln2)n

再比如我们想用泰勒展开求出 π \pi π

s i n , c o s sin,cos sin,cos,原因是他们展开了之后也不收敛没法解方程。

考虑用 f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx,即反正切函数。

先考虑求导:首先因为 tan ⁡ x \tan x tanx arctan ⁡ x \arctan x arctanx是逆函数因此满足:
y = tan ⁡ x ( arctan ⁡ x ) ′ = 1 ( tan ⁡ y ) ′ y=\tan x\\ (\arctan x)'=\frac 1{(\tan y)'} y=tanx(arctanx)=(tany)1
考虑求出 tan ⁡ x \tan x tanx的导数,则根据商法则:
( tan ⁡ x ) ′ = ( sin ⁡ x ) ′ cos ⁡ x − ( cos ⁡ x ) ′ sin ⁡ x ( cos ⁡ x ) 2 = 1 ( cos ⁡ x ) 2 = ( sec ⁡ x ) 2 (\tan x)'=\frac {(\sin x)'\cos x-(\cos x)'\sin x}{(\cos x)^2}=\frac 1{(\cos x)^2}=(\sec x)^2 (tanx)=(cosx)2(sinx)cosx(cosx)sinx=(cosx)21=(secx)2

( arctan ⁡ x ) ′ = 1 ( tan ⁡ y ) ′ = 1 ( sec ⁡ y ) 2 = 1 1 + tan ⁡ ( arctan ⁡ x ) 2 = 1 1 + x 2 (\arctan x)'=\frac 1{(\tan y)'}=\frac 1{(\sec y)^2}=\frac 1{1+\tan(\arctan x)^2}=\frac 1{1+x^2} (arctanx)=(tany)1=(secy)21=1+tan(arctanx)21=1+x21

注意这个 1 1 + x 2 \frac 1{1+x^2} 1+x21可以展开:
1 1 + x 2 = ∑ i = 0 ( − x 2 ) i \frac 1{1+x^2}=\sum_{i=0}(-x^2)^i 1+x21=i=0(x2)i
这个东西求个积分就行了,所以:
arctan ⁡ x = ∑ i = 0 ( − 1 ) i x 2 i + 1 2 i + 1 \arctan x=\sum_{i=0}(-1)^i\frac {x^{2i+1}}{2i+1} arctanx=i=0(1)i2i+1x2i+1
因为 arctan ⁡ 1 = π 4 \arctan 1=\frac {\pi}4 arctan1=4π,所以:
π = 4 ∑ i = 0 ( − 1 ) i 1 2 i + 1 \pi=4\sum_{i=0}(-1)^i\frac {1}{2i+1} π=4i=0(1)i2i+11
∞ ∞ \frac {\infin}{\infin} 型:

一般取最高项,或者采用洛必达法则,泰勒展开可能没什么用。


记录一个公式:

倒角公式,给你两条直线 l 1 , l 2 l_1,l_2 l1,l2,斜率分别为 k 1 , k 2 k_1,k_2 k1,k2,设 l 1 l_1 l1逆时针方向旋转到与 l 2 l_2 l2第一次重合所转的角为 θ θ θ,则满足:
tan ⁡ θ = k 2 − k 1 1 + k 1 ∗ k 2 \tanθ=\frac {k_2-k_1}{1+k_1*k_2} tanθ=1+k1k2k2k1
可以用来方便求角度,比如他可以证明:

从椭圆中的一个焦点发出的一条直线经过椭圆反射都经过另一个焦点。

你可以得到椭圆上一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线的斜率是 − b 2 x 0 a 2 y 0 -\frac {b^2x_0}{a^2y_0} a2y0b2x0

同理也可以算出这个点到焦点的斜率,因此可以算出夹角,就可以证明这两个角相等。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值