离散数学笔记(期末复习用,持续更新…)

离散数学(又称计算机数学)是现代数学的重要分支,是计算机专业课程中的核心基础课程之一。

课程主要分四块:
•    第一部分   数理逻辑(第1章:命题逻辑、谓词逻辑)
•    第二部分   集合论(第2章:集合;第3章:二元关系;第4章:函数)
•    第三部分   代数系统 (第5章:无限集合;第6章:代数; 第7章:格和布尔代数)
•    第四部分   图 论 (第8章:图论)

目录

一、数理逻辑

1.1 命题逻辑

1.1.1 命题及其表示

1.1.2 命题公式

1.1.3 等价和蕴含

1.1.4 范式、主析取范式和主合取范式

1.1.5 推理理论

1.2 谓词逻辑

1.2.1 谓词和量词

1.2.2 谓词演算的永真式



一、数理逻辑

1.1 命题逻辑

1.1.1 命题及其表示

命题是陈述句,而不能是疑问句、命令句、感叹句等;命题真假用真值“真假”、“T,F”或“1,0”表示;

命题必须有真假,命题通常用大写英文字母表示,如 P、Q、R等。


 

命题联结词(否定,合取,析取,蕴含和等值

否定,合取及析取容易理解;

蕴含词:稍加注意的地方是:P→Q,P 称为蕴含前件、条件、前提;Q 称为后件、结果、结论。

当且仅当 P 为真,Q 为假时,P→Q 为假;否则, P→Q 均为真。真值表如下:

可以证明:

等值词:当且仅当P、Q的真值相同,即同为真或同为假时 P↔Q 为真;否则, P↔Q 为假。


1.1.2 命题公式

定义:由命题变元、常元、联结词、括号,以规定的格式联结起来的字符串。

注意:几元函数是由命题公式中命题变元个数决定的,例如P→ Q,两个变元就是2^2=4组真值指派;公式P→ (Q→ R) 可定义三元函数,这样真值表中就要列出2^3=8组真值指派。

《定义》:如果一个命题公式 A 的所有完全指派均为成真指派,则称公式 A 为重言式(永真式)。
《定义》:如果一个命题公式 A 的所有完全指派均为成假指派,则称公式 A 为矛盾式(永假式)。
《定义》:既不是永真式,又不是永假式,则称此命题公式是可满足式。


1.1.3 等价和蕴含

《定义》:如果对两个公式A,B不论作何种指派,它们的真值均相同,则称A,B是逻辑等价的,亦说A等价于B,记AB.

例题:

定理:命题公式A⇔B的充要条件是AB为永真式。

等价式的性质:
1)自反性: A ⇔ A.
2)对称性: A ⇔ B,则 B ⇔ A.
3)传递性: A ⇔ B, B ⇔ C,则 A ⇔ C.

下面列出17组等价公式:

 

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硬核的无脸man~

你的鼓励是我创作的最大功力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值