BZOJ3622: 已经没有什么好害怕的了 DP

Description
给出一个a序列,一个b序列,要你两两配对,且没有相同的元素,在这样的配对中满足:
ai > bi的个数恰好比ai < bi的个数多k对。
要你求出这样的配对有多少组。


Sample Input
4 2
5 35 15 45
40 20 10 30


Sample Output
4


首先对于(n-k)是奇数的答案数肯定为0。
然后其实就是让你求ai > bi的对数恰好为(n+k) / 2的组数。
考虑DP,
首先你排一个序,设f[i][j]为匹配到第i个数匹配对数有k对的方案数。
设next[i]为a[i]在b中满足ai > bj的最大的j,易得:
f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − 1 ] ∗ ( n e x t [ i ] − j + 1 ) f[i][j] = f[i-1][j]+f[i-1][j-1]*(next[i]-j+1) f[i][j]=f[i1][j]+f[i1][j1](next[i]j+1)
然后你可以发现这样时明显会出现重复的。
然后你就要容斥了(我好像卡在这里了。。。)
你设dp[j]为前n位ai > bi的对数恰好为(n+k) / 2的组数。
那么首先我们在原来的f[n][i]求出来剩下还有(n-i)对数可以自由安排,于是他们随意搭配的组数为f[n][i]*(n-i)!。
然后再考虑一个j > i,那么就会有C(j,i)*dp[j]这一部分是重复的。
即可得递推式: d p [ i ] = f [ n ] [ i ] ∗ ( n − i ) ! − ∑ j = i + 1 n C ( j , i ) ∗ d p [ j ] dp[i]=f[n][i]*(n-i)!-\sum_{j=i+1}^{n}C(j,i)*dp[j] dp[i]=f[n][i](ni)!j=i+1nC(j,i)dp[j]


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
int _min(int x, int y) {return x < y ? x : y;}
int _max(int x, int y) {return x > y ? x : y;}
typedef long long LL;
const LL mod = 1000000009;

LL jc[2100], inv[2100];
int a[2100], b[2100], next[2100];
LL f[2100][2100], dp[2100][2100];

void exgcd(LL a, LL b, LL &x, LL &y) {
	if(b == 0) x = 1, y = 0;
	else {
		LL tx, ty; exgcd(b, a % b, tx, ty);
		x = ty; y = tx - ty * (a / b);
	}
}

int main() {
	int n, k; scanf("%d%d", &n, &k); if((n - k) % 2 == 1) {
		printf("0\n");
		return 0;
	} k = (n + k) / 2;
	for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
	for(int i = 1; i <= n; i++) scanf("%d", &b[i]);
	sort(a + 1, a + n + 1), sort(b + 1, b + n + 1);
	int tp = 0;
	for(int i = 1; i <= n; i++) {
		while(b[tp + 1] < a[i] && tp < n) tp++;
		next[i] = tp;
	} f[0][0] = 1;
	for(int i = 1; i <= n; i++) {
		for(int j = 0; j <= i; j++) {
			f[i][j] = f[i - 1][j];
			(f[i][j] += f[i - 1][j - 1] * _max(0, next[i] - j + 1)) %= mod;
		}
	} inv[0] = jc[0] = 1;
	for(int i = 1; i <= n; i++) {
		jc[i] = jc[i - 1] * i % mod;
		LL x, y; exgcd(jc[i], mod, x, y);
		inv[i] = (x + mod) % mod;
	}
	for(int i = n; i >= k; i--) {
		dp[n][i] = f[n][i] * jc[n - i] % mod;
		for(int j = i + 1; j <= n; j++) {
			(dp[n][i] -= dp[n][j] * jc[j] % mod * inv[i] % mod * inv[j - i] % mod) %= mod;
		}
	} printf("%lld\n", (dp[n][k] + mod) % mod);
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值