Description
A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],…,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。
Sample Input
5 2
1 3 4 1 2
Sample Output
2
这题并不会做。。。
其实就相当于选出D个石子使他们异或和为总异或和。
设f[i][j][k]为选到第i个数,模D为j,异或和为k的方案数。
然后就可以直接转移了。
我好像并没有看到总和小于等于1e7的限制
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
int _min(int x, int y) {return x < y ? x : y;}
int _max(int x, int y) {return x > y ? x : y;}
int read() {
int s = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * f;
}
int a[510000];
int f[10][1048576], g[1048576];
int main() {
int n = read(), d = read();
int S = 0;
for(int i = 1; i <= n; i++) a[i] = read(), S ^= a[i];
sort(a + 1, a + n + 1);
f[0][0] = 1;
for(int i = 1; i <= n; i++) {
int tt = _min(a[i] << 1, 1048575);
for(int j = 0; j <= tt; j++) g[j] = f[d - 1][j];
for(int k = d - 1; k >= 1; k--)
for(int j = 0; j <= tt; j++)
(f[k][j] += f[k - 1][j ^ a[i]]) %= mod;
for(int j = 0; j <= tt; j++) (f[0][j] += g[j ^ a[i]]) %= mod;
} int ans = f[0][S];
if(n % d == 0) ans--;
printf("%d\n", (ans + mod) % mod);
return 0;
}