[POI2016]Nim z utrudnieniem DP

Description
A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],…,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。


Sample Input
5 2
1 3 4 1 2


Sample Output
2


这题并不会做。。。
其实就相当于选出D个石子使他们异或和为总异或和。
设f[i][j][k]为选到第i个数,模D为j,异或和为k的方案数。
然后就可以直接转移了。
我好像并没有看到总和小于等于1e7的限制


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
int _min(int x, int y) {return x < y ? x : y;}
int _max(int x, int y) {return x > y ? x : y;}
int read() {
	int s = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
	return s * f;
}

int a[510000];
int f[10][1048576], g[1048576];

int main() {
	int n = read(), d = read();
	int S = 0;
	for(int i = 1; i <= n; i++) a[i] = read(), S ^= a[i];
	sort(a + 1, a + n + 1);
	f[0][0] = 1;
	for(int i = 1; i <= n; i++) {
		int tt = _min(a[i] << 1, 1048575);
		for(int j = 0; j <= tt; j++) g[j] = f[d - 1][j];
		for(int k = d - 1; k >= 1; k--)
			for(int j = 0; j <= tt; j++)
				(f[k][j] += f[k - 1][j ^ a[i]]) %= mod;
		for(int j = 0; j <= tt; j++) (f[0][j] += g[j ^ a[i]]) %= mod;
	} int ans = f[0][S];
	if(n % d == 0) ans--;
	printf("%d\n", (ans + mod) % mod);
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值