bzoj 4347: [POI2016]Nim z utrudnieniem 博弈论+动态规划

题意

A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],…,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。答案对10^9+7取模。
1<=n<=500000,1<=d<=10,1<=a[i]<=1000000,sigma(a[i])<=10000000

分析

有一个很显然的dp方程就是f[i,j,k]表示前i堆石头扔掉的堆数模d等于j且异或和为k时的方案数。
f[i,j,k]=f[i-1,j,k]+f[i-1,j-1,k^a[i]]
但这样转移显然会超时。
考虑先把a从小到大排序,那么a[1..i]异或出来的数就不会超过a[i]*2,那么转移的复杂度就是O(md)
注意当d|n的时候要把答案-1,因为边界条件会多算一次。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=500005;
const int M=1048580;
const int MOD=1000000007;

int n,d,a[N],f[10][M],tmp[M];

int main()
{
    scanf("%d%d",&n,&d);
    int sum=0;
    for (int i=1;i<=n;i++) scanf("%d",&a[i]),sum^=a[i];
    sort(a+1,a+n+1);
    f[0][0]=1;
    for (int i=1,mx=1;i<=n;i++)
    {
        for (;mx<=a[i];mx<<=1);
        int x=a[i];
        for (int j=0;j<=mx;j++) tmp[j]=(f[0][j]+f[d-1][j^x])%MOD;
        for (int j=d-1;j>=1;j--)
            for (int k=0;k<=mx;k++)
                f[j][k]=(f[j][k]+f[j-1][k^x])%MOD;
        for (int j=0;j<=mx;j++) f[0][j]=tmp[j];
    }
    if (n%d==0) f[0][sum]=(f[0][sum]+MOD-1)%MOD;
    printf("%d",f[0][sum]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值