对于图片相似度比较有很多方法,我们这以RGB直方图为例。
我们以一种规则,使得每个图片生成一组描述的特征向量。
opencv的直方图比较函数我们可以巧妙的利用,其有若干比较规则,但只支持直方图的数据结构,我们可以将特征向量拟合成直方图的数据结构,然后使用其的相似度比较函数。
具体的数学计算方法有兴趣的可以看opencv的官方教程,这里我们期望生成百分比形式的相似度参数,所以使用CV_COMP_CORREL
以下是代码,以python编写
- import cv2.cv as cv
- def createHist(img):
- #cv.CvtColor(img,img,cv.CV_BGR2HSV)
- b_plane = cv.CreateImage((img.width,img.height), 8, 1)
- g_plane = cv.CreateImage((img.width,img.height), 8, 1)
- r_plane = cv.CreateImage((img.width,img.height), 8, 1)
- cv.Split(img,b_plane,g_plane,r_plane,None)
- planes = [b_plane, g_plane, r_plane]
- bins = 4
- b_bins = bins
- g_bins = bins
- r_bins = bins
- hist_size = [b_bins,g_bins,r_bins]
- b_range = [0,255]
- g_range = [0,255]
- r_range = [0,255]
- ranges = [b_range,g_range,r_range]
- hist = cv.CreateHist(hist_size, cv.CV_HIST_ARRAY, ranges, 1)
- cv.CalcHist([cv.GetImage(i) for i in planes], hist)
- cv.NormalizeHist(hist,1)
- return hist
- def imgcompare(image1,image2):
- img1 = cv.LoadImage(image1)
- hist1 = createHist(img1)
- img2 = cv.LoadImage(image2)
- hist2 = createHist(img2)
- return cv.CompareHist(hist1,hist2,cv.CV_COMP_CORREL)
- print imgcompare("test_19037_19037_source.jpg","19015.jpg")
- print imgcompare("test_19037_19037_source.jpg","19014.jpg")