cf div2

7.30

A

题意

定义这一种数 为nearly prime 就是可以分成两个质数相乘如6=23 14=27等
然后给你一个数n 问时候可以把n 分成四个不想等的数其中有3个是nearly prime

思路

一般分数的都是思维题 有几个数肯定是固定的,这题就是 最小的三个nearly 为 6 10 14 如果小于等于他们的和很定不行如果大于就是可以的,然后 要保证都不相同如果n 减去他们的和 和他们其中的一个相等 那么就可以让14+1 为15 也是这种数,然后 第四个数 减1 可能变变成 6 9 13 都不相同

代码

#include <iostream>
using namespace std;
const int N=6+10+14;
int main()
{
   
   int t;
   cin>>t;
   while(t--)
   {
   	int n;
   	cin>>n;
   	if(n<=N)
   	 cout<<"NO";
   	else
   	 {
   	   cout<<"YES"<<endl;
	  int temp=n-N;
	  if(temp==6||temp==10||temp==14) 
	   cout<<"6 10 15 "<<temp-1;
	  else
	   cout<<"6 10 14 "<<temp;
	}
	 cout<<endl;
   }
   return 0;
}

B

题意

给你一个数n 然后问 去掉一个n 位的十进制数的 二进制形shi的后n位 最大的满足条件的 这个n位的shi进制数 最小是多少

思路

首先0-9只有 8 9 二进制是4位的,保证剩的最大肯定要满足位数足够长,所以n 个9 满足的删除后二进制肯定是最大的,但是数不是最小的,因为后面还要删除几位,那么可以让删除8 来替换删除9这样就保证数小了,8的数就是n/4向上充取整 因为 n=1 输出8 而不是9

代码

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		int t=ceil(n/4.0);
		for(int i=1;i<=n-t;i++)
		 cout<<"9";
		for(int i=1;i<=t;i++)
		 cout<<"8";
		cout<<endl; 
	}
	return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值