7.30
A
题意
定义这一种数 为nearly prime 就是可以分成两个质数相乘如6=23 14=27等
然后给你一个数n 问时候可以把n 分成四个不想等的数其中有3个是nearly prime
思路
一般分数的都是思维题 有几个数肯定是固定的,这题就是 最小的三个nearly 为 6 10 14 如果小于等于他们的和很定不行如果大于就是可以的,然后 要保证都不相同如果n 减去他们的和 和他们其中的一个相等 那么就可以让14+1 为15 也是这种数,然后 第四个数 减1 可能变变成 6 9 13 都不相同
代码
#include <iostream>
using namespace std;
const int N=6+10+14;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
if(n<=N)
cout<<"NO";
else
{
cout<<"YES"<<endl;
int temp=n-N;
if(temp==6||temp==10||temp==14)
cout<<"6 10 15 "<<temp-1;
else
cout<<"6 10 14 "<<temp;
}
cout<<endl;
}
return 0;
}
B
题意
给你一个数n 然后问 去掉一个n 位的十进制数的 二进制形shi的后n位 最大的满足条件的 这个n位的shi进制数 最小是多少
思路
首先0-9只有 8 9 二进制是4位的,保证剩的最大肯定要满足位数足够长,所以n 个9 满足的删除后二进制肯定是最大的,但是数不是最小的,因为后面还要删除几位,那么可以让删除8 来替换删除9这样就保证数小了,8的数就是n/4向上充取整 因为 n=1 输出8 而不是9
代码
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
int t=ceil(n/4.0);
for(int i=1;i<=n-t;i++)
cout<<"9";
for(int i=1;i<=t;i++)
cout<<"8";
cout<<endl;
}
return 0;
}