题目地址:http://poj.org/problem?id=2689
题意:给你一个不超过1000000的区间L-R,要你求出区间内相邻素数差的最大最小值,输出相邻素数。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std;
typedef long long LL;
const int N=1<<16;
const int M=1000005;
const int mod=1000007;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
int pri[N],k;
void xh_phi()
{
int i,j;
memset(pri,0,sizeof(pri));
k=0;
for(i=2;i<=N;i++)
{
if(!pri[i])
{
pri[++k]=i;
for(j=i;j<=N;j+=i)
pri[j]=1;
}
}
}
int prime[M],t;
bool nopri[M];
void getprime(int L,int R)
{
int i,j;
memset(nopri,false,sizeof(nopri));
if(L<2)
L=2;
for(i=1;i<=k&&(LL)pri[i]*pri[i]<=R;i++)
{
int s=L/pri[i]+(L%pri[i]>0);
if(s==1) s=2;
for(j=s;(LL)j*pri[i]<=R;j++)
if((LL)j*pri[i]>=L)
nopri[j*pri[i]-L]=true;
}
prime[0]=0;
t=0;
for(i=0;i<=R-L;i++)
if(!nopri[i])
{
prime[++t]=i+L;
}
}
int main()
{
int n,m,i,j;
xh_phi();
while(~scanf("%d%d",&n,&m))
{
getprime(n,m);
int Mi=INF,Ma=0;
int x1,x2,y1,y2,f=0;
if(t<2)
{
printf("There are no adjacent primes.\n");
continue;
}
for(i=1;i<t;i++)
{
int p=prime[i+1]-prime[i];
if(p>Ma)
{
Ma=p;x2=prime[i];y2=prime[i+1];
}
if(p<Mi)
{
Mi=p;x1=prime[i];y1=prime[i+1];
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",x1,y1,x2,y2);
}
return 0;
}