在自动驾驶进行大数据量因果推理实验时,如何减少无用功,提高实验效率?

在对实验结果做反事实推理时,通常需要对数据进行多次循环,然后对多次循环的结果进行处理,如果只在最后结果结束时,再进行处理,可能会由于反事实过程中某个参数设置错误,导致整个反事实实验出现错误,为了提高实验效率,需要在实验过程中,对结果进行检验,具体方法如下:

一、数据迁移

将跑完的部分数据迁移到另一个python文件里,并加载好相关的包。

二、对部分结果进行验证

比如,我这里需要对反事实的结果进行排序,在这里插入图片描述
如果某个参数设置错误,那么在做反事实时,就会出现所有实验组该参数的count计数值为0,这是错误的现象,
那么我就可以在新的文件里,先对部分数据进行分析,比如当收集一万条数据时,进行一次计数实验,这样如果出现了上述错误现象,可以停止实验,避免无效的等待。

三、提高验证环节效率

当我们在验证时,我们需要对某一个参数循环多次
在这里插入图片描述
,这里有时会设置错误的参数,所以在跑完十组左右的数据,我们就可以看一下数据表里面有没有设置错误的参数,避免后续实验做无用功。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值