DSOJ Sliding Window

题目链接

#include<stdio.h>			//Sliding Window
#include<stdlib.h>
/*
算法思想:
选择单调队列的数据结构

对于求最小值而言,建立队列元素递增的单调队列,队首保存的即为最小值,在将数组元素入队的过程中,需要记录入队元素的index,
用于求从a[i-k+1]....a[i]的最小值时判断队首元素是否还在宽度为k的窗口中

入队过程:将队尾元素与将要入队的元素进行比较,将队尾元素出队,直至队尾元素小于当前将要入队的元素,这样就保证了递减单调
队列的性质,同时由于是求最小值,比当前元素大的队尾元素在以后的操作中不会成为答案,因此可以出队删除

同样地,可以求得最大值

附:

单调队列适合解决的问题:对此查询k个连续序列的最大值,最小值,可以将复杂度缩小为O(n)
实现原理:

通过队列实现(只不过其中的元素单调),以求最小值为例,入队时比较队尾元素与插入元素的大小,如果队尾元素大于等于插入元素,
则队尾出队,直至队尾元素小于插入元素或队空,再将插入元素入队即可。

这样,插入k个元素后,队首即为最小值元素,进行下一次查询时,需要判断队首元素是否在这次的查询区间中(通过比较队首元素的
原始下标),如果不在则队首出队,再对新的队首元素进行判断即可。
*/

typedef struct
{
	int index;				//保存队列元素的索引,即保存a[i]的i,用于判断是否超出窗口宽度k
	int num;
}Queue;

int  *Min, *Max;

void GetMin(int *a, Queue *Q, int n, int k)
{
	int front = 0, rear = 0, i;
	Q[rear].index = 0;
	Q[rear].num = a[0];
	for (i = 0; i < k - 1; i++)
	{
		while (front <= rear&&Q[rear].num >= a[i])	//队尾元素值大于等于要插入的值,则队尾出队
			rear--;
		Q[++rear].index = i;
		Q[rear].num = a[i];
	}
	for (; i < n; i++)
	{
		while (front <= rear&&Q[rear].num >= a[i])
			rear--;
		Q[++rear].index = i;
		Q[rear].num = a[i];
		while (Q[front].index < i - k + 1)		//判断队首元素是否还在窗口中
			front++;
		Min[i - k + 1] = Q[front].num;
	}
}

void GetMax(int *a, Queue *Q, int n, int k)
{
	int front = 0, rear = 0, i;
	Q[rear].index = 0;
	Q[rear].num = a[0];
	for (i = 0; i < k - 1; i++)
	{
		while (front <= rear&&Q[rear].num <= a[i])	//队尾元素值大于等于要插入的值,则队尾出队
			rear--;
		Q[++rear].index = i;
		Q[rear].num = a[i];
	}
	for (; i < n; i++)
	{
		while (front <= rear&&Q[rear].num <= a[i])
			rear--;
		Q[++rear].index = i;
		Q[rear].num = a[i];
		while (Q[front].index < i - k + 1)		//判断窗口是否已划过这个数
			front++;
		Max[i - k + 1] = Q[front].num;
	}
}

void print(int n, int k)
{
	int i;
	for (i = 0; i < n - k + 1; i++)
	{
		printf("%d", Min[i]);
		if (i < n - k) printf(" ");
	}
	printf("\n");
	for (i = 0; i < n - k + 1; i++)
	{
		printf("%d", Max[i]);
		if (i < n - k) printf(" ");
	}
	printf("\n");
}

int main()
{
	int *a, i, n, k;
	Queue *Q;
	scanf("%d%d", &n, &k);
	a = (int *)malloc(sizeof(int)*n);
	Min = (int *)malloc(sizeof(int)*n);
	Max = (int *)malloc(sizeof(int)*n);
	Q = (Queue *)malloc(sizeof(Queue)*n);
	for (i = 0; i < n; i++)
		scanf("%d", a + i);
	GetMin(a, Q, n, k);
	GetMax(a, Q, n, k);
	print(n, k);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值