#include<stdio.h> //Sliding Window
#include<stdlib.h>
/*
算法思想:
选择单调队列的数据结构
对于求最小值而言,建立队列元素递增的单调队列,队首保存的即为最小值,在将数组元素入队的过程中,需要记录入队元素的index,
用于求从a[i-k+1]....a[i]的最小值时判断队首元素是否还在宽度为k的窗口中
入队过程:将队尾元素与将要入队的元素进行比较,将队尾元素出队,直至队尾元素小于当前将要入队的元素,这样就保证了递减单调
队列的性质,同时由于是求最小值,比当前元素大的队尾元素在以后的操作中不会成为答案,因此可以出队删除
同样地,可以求得最大值
附:
单调队列适合解决的问题:对此查询k个连续序列的最大值,最小值,可以将复杂度缩小为O(n)
实现原理:
通过队列实现(只不过其中的元素单调),以求最小值为例,入队时比较队尾元素与插入元素的大小,如果队尾元素大于等于插入元素,
则队尾出队,直至队尾元素小于插入元素或队空,再将插入元素入队即可。
这样,插入k个元素后,队首即为最小值元素,进行下一次查询时,需要判断队首元素是否在这次的查询区间中(通过比较队首元素的
原始下标),如果不在则队首出队,再对新的队首元素进行判断即可。
*/
typedef struct
{
int index; //保存队列元素的索引,即保存a[i]的i,用于判断是否超出窗口宽度k
int num;
}Queue;
int *Min, *Max;
void GetMin(int *a, Queue *Q, int n, int k)
{
int front = 0, rear = 0, i;
Q[rear].index = 0;
Q[rear].num = a[0];
for (i = 0; i < k - 1; i++)
{
while (front <= rear&&Q[rear].num >= a[i]) //队尾元素值大于等于要插入的值,则队尾出队
rear--;
Q[++rear].index = i;
Q[rear].num = a[i];
}
for (; i < n; i++)
{
while (front <= rear&&Q[rear].num >= a[i])
rear--;
Q[++rear].index = i;
Q[rear].num = a[i];
while (Q[front].index < i - k + 1) //判断队首元素是否还在窗口中
front++;
Min[i - k + 1] = Q[front].num;
}
}
void GetMax(int *a, Queue *Q, int n, int k)
{
int front = 0, rear = 0, i;
Q[rear].index = 0;
Q[rear].num = a[0];
for (i = 0; i < k - 1; i++)
{
while (front <= rear&&Q[rear].num <= a[i]) //队尾元素值大于等于要插入的值,则队尾出队
rear--;
Q[++rear].index = i;
Q[rear].num = a[i];
}
for (; i < n; i++)
{
while (front <= rear&&Q[rear].num <= a[i])
rear--;
Q[++rear].index = i;
Q[rear].num = a[i];
while (Q[front].index < i - k + 1) //判断窗口是否已划过这个数
front++;
Max[i - k + 1] = Q[front].num;
}
}
void print(int n, int k)
{
int i;
for (i = 0; i < n - k + 1; i++)
{
printf("%d", Min[i]);
if (i < n - k) printf(" ");
}
printf("\n");
for (i = 0; i < n - k + 1; i++)
{
printf("%d", Max[i]);
if (i < n - k) printf(" ");
}
printf("\n");
}
int main()
{
int *a, i, n, k;
Queue *Q;
scanf("%d%d", &n, &k);
a = (int *)malloc(sizeof(int)*n);
Min = (int *)malloc(sizeof(int)*n);
Max = (int *)malloc(sizeof(int)*n);
Q = (Queue *)malloc(sizeof(Queue)*n);
for (i = 0; i < n; i++)
scanf("%d", a + i);
GetMin(a, Q, n, k);
GetMax(a, Q, n, k);
print(n, k);
return 0;
}
DSOJ Sliding Window
最新推荐文章于 2024-09-08 15:17:05 发布