ZOJ-3187

开始以为是DP,后来发现不是,按大神思路做的,二分查找,实现上并不难

#include<stdio.h>
#include<stdlib.h>
#include<limits.h>

struct Ingredient
{
	int x, y, s1, p1, s2, p2;
};

static int n, m;

static int min_price(int n, int s1, int p1, int s2, int p2)
{
	int i, price, result = INT_MAX;
	for (i = 0; (i - 1) * s1 < n; i++)
	{
		int remain = n - i * s1;
		if (remain > 0)
		{
			if (remain % s2 == 0)
				price = i * p1 + (remain / s2) * p2;
			else
				price = i * p1 + (remain / s2 + 1) * p2;
		}
		else
			price = i * p1;

		if (price < result)
			result = price;
	}
	return result;
}

static int can_buy(int man, struct Ingredient *array)
{
	int i, sum = 0;
	for (i = 0; i < n; i++)
	{
		sum += min_price(man * array[i].x - array[i].y, array[i].s1,
				array[i].p1, array[i].s2, array[i].p2);
		if (sum > m)
			return 0;
	}
	return 1;
}

int main()
{
	struct Ingredient *array = malloc(100 * sizeof(struct Ingredient));
	while (scanf("%d %d", &n, &m), n || m)
	{
		int i;
		for (i = 0; i < n; i++)
			scanf("%d%d%d%d%d%d", &(array[i].x), &(array[i].y), &(array[i].s1),
					&(array[i].p1), &(array[i].s2), &(array[i].p2));

		int low = 0, high = 100000, center;
		while (high - low > 1)
		{
			center = (low + high) / 2;
			if (can_buy(center, array))
				low = center;
			else
				high = center;
		}
		printf("%d\n", low);
	}
	free(array);
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值