使用MindSpore实现一个简单的线性函数拟合

本文介绍了如何使用MindSpore实现线性回归算法。通过生成数据集、定义训练网络、设置数据增强、定义损失函数以及执行训练,展示了在MindSpore中进行线性函数拟合的完整过程。最后,文章提到了调整参数以优化拟合效果的可能性。
摘要由CSDN通过智能技术生成

回归问题算法通常是利用一系列属性来预测一个值,预测的值是连续的。例如给出一套房子的一些特征数据,如面积、卧室数等等来预测房价,利用最近一周的气温变化和卫星云图来预测未来的气温情况等。如果一套房子实际价格为500万元,通过回归分析的预测值为499万元,则认为这是一个比较好的回归分析。在机器学习问题中,常见的回归分析有线性回归、多项式回归、逻辑回归等。本例子介绍线性回归算法,并通过MindSpore进行线性回归AI训练体验。

整体流程如下:

生成数据集

定义训练网络

定义前向传播网络与反向传播网络并关联

拟合过程可视化准备

执行训练

  1. 环境准备

    设置MindSpore运行配置

    from mindspore import context

    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")

    本教程代码依赖matplotlib第三方支持包,可使用命令pip install matplotlib安装。

  2. 生成数据集

    定义数据集生成函数

    get_data用于生成训练数据集和测试数据集。由于拟合的是线性数据,假定要拟合的目标函数为:f(x)=2x+3f(x)=2x+3,那么我们需要的训练数据集应随机分布于函数周边,这里采用了f(x)=2x+3+noisef(x)=2x+3+noise的方式生成,其中noise为遵循标准正态分布规律的随机数值。

    import numpy as np

    def get_data(num, w=2.0, b=3.0):

       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值