Gradient(F)函数求的是数值上的梯度,假设F为矩阵.
>> x=[6,9,3,4,0;5,4,1,2,5;6,7,7,8,0;7,8,9,10,0]
x =
6 9 3 4 0
5 4 1 2 5
6 7 7 8 0
7 8 9 10 0
6 9 3 4 0
5 4 1 2 5
6 7 7 8 0
7 8 9 10 0
>> [Fx,Fy]=gradient(x)
Fx =
3.0000 -1.5000 -2.5000 -1.5000 -4.0000
-1.0000 -2.0000 -1.0000 2.0000 3.0000
1.0000 0.5000 0.5000 -3.5000 -8.0000
1.0000 1.0000 1.0000 -4.5000 -10.0000
Fy =
-1.0000 -5.0000 -2.0000 -2.0000 5.0000
0 -1.0000 2.0000 2.0000 0
1.0000 2.0000 4.0000 4.0000 -2.5000
1.0000 1.0000 2.0000 2.0000 0
Fx =
3.0000 -1.5000 -2.5000 -1.5000 -4.0000
-1.0000 -2.0000 -1.0000 2.0000 3.0000
1.0000 0.5000 0.5000 -3.5000 -8.0000
1.0000 1.0000 1.0000 -4.5000 -10.0000
Fy =
-1.0000 -5.0000 -2.0000 -2.0000 5.0000
0 -1.0000 2.0000 2.0000 0
1.0000 2.0000 4.0000 4.0000 -2.5000
1.0000 1.0000 2.0000 2.0000 0
计算规则: [Fx,Fy]=gradient(F),其中Fx为其水平方向上的梯度,Fy为其垂直方向上的梯度,Fx的第一列元素为原矩阵第二列与第一列元素之差,Fx的第二列元素为原矩阵第三列与第一列元素之差除以2,以此类推:Fx(i,j)=(F(i,j+1)-F(i,j-1))/2。
最后一列则为最后两列之差。同理,可以得到Fy。