MATLAB非均匀网格梯度计算

本文详细描述了如何在Matlab中为非均匀网格编写梯度计算函数,通过理论推导和代码实现,特别是针对边界点和内部网格点采用了二阶偏心差分和中心差分策略,与内置的gradient函数进行误差对比,显示了自定义函数的高精度优势。
摘要由CSDN通过智能技术生成

在matlab中,gradient函数可以很方便的对均匀网格进行梯度计算,但是对于非均匀网格,但是gradient却无法求解非均匀网格的梯度,这一点我之前犯过错误。我之前以为在gradient函数中指定x,y等坐标,其求解的就是非均匀网格梯度了,然而并不是。
在这里插入图片描述
于是,今天下午开始写非均匀网格求梯度的函数。
首先,函数的要求为:
1、边界处采用二阶偏心差分
2、内部网格点采用二阶中心差分
3、计算三维矩阵的梯度

明确目标之后,我们首先进行理论推导:

理论推导

1、内部网格点

在这里插入图片描述
对a1和a3两点分别进行泰勒展开,公式如下:
a 3 = a 2 + a ˙ 2 Δ x 2 + 1 2 a ¨ 2 Δ x 2 2 + O ( Δ x 2 3 ) 1 ◯ a 1 = a 2 − a ˙ 2 Δ x 1 + 1 2 a ¨ 2 Δ x 1 2 + O ( Δ x 1 3 ) 2 ◯ a_{3}=a_{2}+\dot{a}_{2}\Delta x_{2}+\frac{1}{2}\ddot{a}_{2}\Delta x_{2}^{2}+O(\Delta x_{2}^{3})\textcircled{1} \\a_{1}=a_{2}-\dot{a}_{2}\Delta x_{1}+\frac{1}{2}\ddot{a}_{2}\Delta x_{1}^{2}+O(\Delta x_{1}^{3})\textcircled{2} a3=a2+a˙2Δx2+21a¨2Δx22+O(Δx23)1a1=a2a˙2Δx1+21a¨2Δx12+O(Δx13)2

在这里插入图片描述
最终得到
在这里插入图片描述

2、边界点

在这里插入图片描述

理论部分结束,下面进入代码部分

代码部分

首先,我写了一个1D的函数

function dydx = calc_grad_1D(x,y)
%% 求解一维数组的梯度
%% input1:一维函数坐标-->x
%% input2:一维函数值-->y
dydx = zeros(1,length(x));
for i = 1:length(x)
    if i>1 && i<length(x)
        deltax1 = x(i)-x(i-1);
        deltax2 = x(i+1)-x(i);
        son = (y(i+1)*deltax1^2-y(i-1)*deltax2^2-y(i)*(deltax1^2-deltax2^2));
        mom = (deltax2*deltax1^2+deltax1*deltax2^2);
        dydx(i) = son/mom;
    elseif i==1
        n = (x(3)-x(1))/(x(2)-x(1));
        son = y(i+2)-y(i+1)*n^2-(1-n^2)*y(i);
        mom = (n-n^2)*(x(i+1)-x(i));
        dydx(i)=son/mom;
    elseif i==length(x)
        n = (x(i)-x(i-2))/(x(i)-x(i-1));
        son = y(i-2)-y(i-1)*n^2-(1-n^2)*y(i);
        mom = (n-n^2)*(x(i)-x(i-1));
        dydx(i)=-son/mom;
    end
end
end

接下来验证该函数的准确性

x = [1 2 4 7 10];
y = x.^2;
%%
dydx = calc_grad_1D(x,y);
%%
dydx_ana = 2.*x;
plot(x,dydx_ana,'-*')
hold on
plot(x,dydx,'-o')
xlabel('x');ylabel('dydx')
legend('理论值','数值解')

在这里插入图片描述
接下来我们进行3D矩阵的梯度求解,思想是调用上述的1D求解函数。
代码如下:

function [dfdx,dfdy,dfdz] = calc_grad_3D(F,X,Y,Z)
%UNTITLED26 此处提供此函数的摘要
%   此处提供详细说明
nx = size(X,1);ny = size(Y,2);nz = size(Z,3);
dfdx = zeros(nx,ny,nz);dfdy = zeros(nx,ny,nz);dfdz = zeros(nx,ny,nz);
for j = 1:ny
    for k = 1:nz
        dfdx(:,j,k) = calc_grad_1D(X(:,j,k),F(:,j,k));
    end
end
for i = 1:nx
    for k = 1:nz
        dfdy(i,:,k) = calc_grad_1D(Y(i,:,k),F(i,:,k));
    end
end
for i = 1:nx
    for j = 1:ny
        dfdz(i,j,:) = calc_grad_1D(Z(i,j,:),F(i,j,:));
    end
end
end

具体案例是求解函数 F = x 2 + y 2 + z 2 F=x^2+y^2+z^2 F=x2+y2+z2在三个方向的梯度

clc;clear
x = 1:10;y = x;z = x;
[X,Y,Z] = ndgrid(x,y,z);
F = X.^3+Y.^2+Z.^3;
%%
[dFdy,dFdx,dFdz] = gradient(F,Y(1,:,1),X(:,1,1),Z(1,1,:));
%%
[dfdx,dfdy,dfdz] = calc_grad_3D(F,X,Y,Z);
%% 理论解与数值解对比
dfdy_ana = 2.*(Y);
dfdy_ana = reshape(dfdy_ana,1000,1);
dfdy = reshape(dfdy,1000,1);
dFdy = reshape(dFdy,1000,1);
c = abs(dfdy-dfdy_ana);
d = abs(dFdy-dfdy_ana);
plot(c,'-o')
hold on
plot(d,'-o')
%% 绘图设置
axis([0 1000 0 2])
legend('My code','MATLAB gradient')
ylabel('误差')


结果如下:
在这里插入图片描述可以看出,matlab里的gradient函数由于在边界上采用一阶差分,因此存在误差,而我们的函数内部点和边界点都采用二阶精度,因此误差为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值