LIBSVM is an integrated software for support vector classification, (C-SVC,nu-SVC),regression (epsilon-SVR,nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.
LIBSVM是一个集成软件包,提供支持向量机分类(C-SVC,nu-SVC),回归(epsilon-SVR,nu-SVR)以及分布估计(one-class SVM).工具包支持多类分类问题。
LIBSVM是台湾大学林智仁(LinChih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包。
以上介绍来自LIBSVM官网:http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
官网上提供了软件包及各种其它工具的下载。
1. 编译
拿到软件包的第一件事就是阅读README,面对“读我……读我”这么热情的呼唤你难道无动于衷?
On Unix systems, type `make' to build the `svm-train' and `svm-predict'
programs. Run them without arguments to show the usages of them.
只要在libsvm目录下使用make命令编译就OK了。
2.使用——训练
如果你对SVM还没有任何了解,请你先参考机器学习及模式识别相关书籍。如果你用过matlab,http://www.matlabsky.com/thread-10966-1-1.html以matlab版本的libsvm为基础提供了许多清晰易懂的讲解。
在入门阶段,我们还是死抓着README不放,接下来写了什么?数据格式,
The format of training and testing data file is:
<label> <index1>:<value1> <index2>:<value2> ...
label,需要分几类就有几个不同的标签值,对于训练数据,标签一定是已知的,对于测试数据,标签用来衡量精度,对于新的要预测的数据,标签是未知的,目的就是为了预测标签,此时数据文件的第一列可以设为任意值;
index值是递增的,若要使用自定义的核函数,index从0开始,否则从1开始;
value表示分类目标的特征值,一行特征值[value1 value2 value3 ... valuen]形成一个特征向量。
LIBSVM中给了一个测试用的数据文件heart_scale,其中部分数据如下:
+1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1
-1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1
-1 1:0.458333 2:1 3:1 4:-0.358491 5:-0.374429 6:-1 7:-1 8:-0.480916 9:1 10:-0.935484 12:-0.333333 13:1
-1 1:0.875 2:-1 3:-0.333333 4:-0.509434 5:-0.347032 6:-1 7:1 8:-0.236641 9:1 10:-0.935484 11:-1 12:-0.333333 13:-1
-1 1:0.5 2:1 3:1 4:-0.509434 5:-0.767123 6:-1 7:-1 8:0.0534351 9:-1 10:-0.870968 11:-1 12:-1 13:1
+1 1:0.125 2:1 3:0.333333 4:-0.320755 5:-0.406393 6:1 7:1 8:0.0839695 9:1 10:-0.806452 12:-0.333333 13:0.5
标签只有+1和-1两类,索引值从1~13,因此特征向量的长度为13。
下面使用编译得到的svm-train对heart_scale数据进行训练。
[monkeyzx@CentOS libsvm-3.14]$ ./svm-train
Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC (multi-class classification)
1 -- nu-SVC (multi-class classification)
2 -- one-class SVM
3 -- epsilon-SVR (regression)
4 -- nu-SVR (regression)
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- precomputed kernel (kernel values in training_set_file)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)
当没有输入数据时,svm-train将打印出其格式和用法。
[monkeyzx@CentOS libsvm-3.14]$ ./svm-train heart_scale svm_model
*
optimization finished, #iter = 162
nu = 0.431029
obj = -100.877288, rho = 0.424462
nSV = 132, nBSV = 107
Total nSV = 132
从svm-train对heart_scale的训练结果可以看出,总的优化迭代次数为162,支持向量的数量为132,其它几个值都是SVM相关的参数。训练结果生成model,该model将用于对新样本的预测(因为新样本的标签是未知的,预测就是根据新样本的特征预测其标签)。我们可以看看model_file里面有什么,
svm_type c_svc // 支持向量机类型
kernel_type rbf // 核函数类型为RBF
gamma 0.0769231 // 核函数的gamma值
nr_class 2 // 分类类数
total_sv 132 // 总的支持向量个数
rho 0.424462 // 支持向量机的判决函数的常量
label 1 -1 // 标签
nr_sv 64 68 // 与标签对应的支持向量个数,加起来为132
SV // 下面都是支持向量
1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1
0.5104832128985153 1:0.125 2:1 3:0.333333 4:-0.320755 5:-0.406393 6:1 7:1 8:0.0839695 9:1 10:-0.806452 12:-0.333333 13:0.5
1 1:0.333333 2:1 3:-1 4:-0.245283 5:-0.506849 6:-1 7:-1 8:0.129771 9:-1 10:-0.16129 12:0.333333 13:-1
1 1:0.208333 2:1 3:0.333333 4:-0.660377 5:-0.525114 6:-1 7:1 8:0.435115 9:-1 10:-0.193548 12:-0.333333 13:1
1 1:0.166667 2:1 3:0.333333 4:-0.358491 5:-0.52968 6:-1 7:1 8:0.206107 9:-1 10:-0.870968 12:-0.333333 13:1
1 1:0.25 2:1 3:-1 4:0.245283 5:-0.328767 6:-1 7:1 8:-0.175573 9:-1 10:-1 11:-1 12:-1 13:-1
1 1:-0.541667 2:1 3:1 4:0.0943396 5:-0.557078 6:-1 7:-1 8:0.679389 9:-1 10:-1 11:-1 12:-1 13:1
...
2.使用——测试
[monkeyzx@CentOS libsvm-3.14]$ ./svm-predict
Usage: svm-predict [options] test_file model_file output_file
options:
-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported
-q : quiet mode (no outputs)
test_file就是测试文件,格式与训练时数据文件格式一样。
model_file就是svm-train的输出model文件。
output_file为svm_predict的输出结果文件,我们可以看一下输出结果是什么,
1
-1
-1
1
-1
-1
1
1
1
1
1
1
-1
...
在测试时就是预测的标签结果,通过该标签结果与给定的包含基准事实的label比较,得到分类精度,从而衡量分类器的性能。
最终,我在资源中心上传了一份林智仁的讲义
SVM理论基础看这个基本上就够了,需要深入则可以参考其中给出的参考文献。