淘宝短视频原创检测,重复检测算法原理分析

本文探讨了尝试在同一短视频上重复投放以获取更多流量的问题,指出抖音与淘宝等平台的视频原创检测算法存在显著差异。尽管可能通过AI和剪辑技术规避一些检测,但淘宝的检测标准更严格,包括帧处理、关键帧对比和原创判定算法等。视频内容理解涉及深度学习模型对图像特征的提取,而各平台的审核力度也不同,这使得直接复制抖音策略在淘宝上行不通。
摘要由CSDN通过智能技术生成

从技术角度,我们分析下下列问题:

①拍摄短视频的成本很高,我能不能同一个短视频多次重复投放,多次获取流量?

②我用AI手工去重 ,投抖音 、抖加基本都能投放,为什么过不了淘宝的原创检测?

③我也用剪辑软件做了各种蒙版、帧数、背景音乐等参数的调整,但淘宝还是判定视频重复。

这些问题的核心出发点就是,希望低成本的将同一短视频通过多次投放从而将流量价值放大到极致,将ROI最大化。

但其中最大的一个误区就是,利用抖音的算法来照搬到阿里短视频。本质上,二者的算法存在很大差异。二者的重复检测的无论是从比较维度、平台积累的历史视频库(视频里随机抽帧、关键帧组合来和平台现有数据库进行对比)、涉及的原创判定算法、人工审核的力度等都是不一样的。

      视频内容理解的第一步便是对视频进行片段化视频帧处理, 也就是随机采样。视频抽帧指用视频的关键帧表征整个视频的完整含义, 针对不同类型视频编码格式, 帧速率, 比特率, 视频分辨率以及不同种类的视频, 视频的抽帧大概分为按视频固定时间间隔抽帧和基于实际图像内容抽帧, 具体可细分为聚类抽帧, 基于运动抽帧, 基于镜头抽帧本文采取深度学习 CNN 模型框架对图像进行提取特征, 其中并对比了目前主流模型的特征提取能力并针对特征数据进行针对训练, 以便得到更好的模型参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值