视频检测之: DECOLOR 算法

文章来源: Zhou X, Yang C, Yu W. Moving object detection by detecting contiguous outliers in the low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597-610.

题外话:
不愧是发 TPAMI 的牛人,名字起得这么形象生动。其实算法的全程为 detecting contiguous outliers in the low-rank representation,然后强行取了朗朗上口的名字 —— DECOLOR。

Overview
讲道理,DECOLOR 算法可以算是 RPCA 算法的分支之一,也可以独立于 RPCA 算法。下文会慢慢揭开 DECOLOR 算法的面纱。言归正传,简而言之 DECOLOR 算法在利用 low-rank 矩阵对背景建模,sparse 矩阵对前景建模的同时,利用 Markov Random Field 考虑空间连续性,从而得到较好的视频检测前景背景分离的效果。而且和传统的 RPCA 算法相比有一个很显著的特点(优势):DECOLOR 是显式对前景 Mask建模,且在同一优化框架中得到前景 Mask 和背景结果。

简短的 Review
传统的视频分析流程一般分为三步:Object detection → Object tracking → Behavior recognition。显然 Object detection 是视频处理的基础,现有的 Object detection 技术主要有以下两个方面:
(1) 依赖 Training Data 的 Object detector 和 Background Subtraction 技术。
(2) Motion Segmentation 技术。

本篇博文以下内容默认读者对 RPCA 技术具有一定了解,具体 RPCA 博文请自行百度。

算法详情
DECOLOR 算法专注于如何在 low-rank 矩阵中恢复出 连续性的前景区域。

  • Background Model
    还是像传统的 RPCA 问题中的建模方式 —— Low-rank 这里写图片描述
  • Foreground Model
    个人认为还是比较具有创新性的一部分,利用 Markov Random Field 对于 前景 support 矩阵进行建模:
    这里写图片描述
    其中 unary energy term 这里写图片描述 , 且这里写图片描述 是 pairwise energy term 项。其中惩罚常数是调整的参数。
  • Signal Model
    认为在 前景 support 矩阵 = 0 处,背景是具有最小二乘意义下对于原始数据的最好的拟合结果; 在 前景 support 矩阵 = 1 处,前景完全等于原始数据在对应位置的结果。
  • Unified Framework
    最小化能量方程的目的是求 背景矩阵 B 和前景 Mask 矩阵 S:
    这里写图片描述

具体求解方法请参阅原文。这里需要强调的是从上面的式子可以发现: 相比于传统的 RPCA 算法, DECOLOR 算法其实是真正对前景区域的 l0范数 —— 这里写图片描述这里写图片描述 确保前景区域的连续性。 在实际应用中其中各个参数是可以自行调节的常数。

后话
文章的创新性其实是通过 Markov 性引入 l0范数的求解以及连续性的保证。个人认为全篇文章最精彩的地方在于将 DECOLOR 算法和 RPCA 以及 Sparse Signal Recover 算法的理论层面的对比,那段写的着实精彩,通过算法层面的对比分析出 DECOLOR 算法的优势,并且对算法的解释阐述更加透彻。 这或许就是大牛的文章和一般文章的区别吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值