题意明了,找凸四边形个数
n = 30;四重循环暴力
排好序后我们知道对角线可能是 1-3和2-4,,也可能是 1-4和2-3,,只需判断对角线是否相交就可以判断是否为凸四边形
这里用叉积判是否相交:(下一篇博文用面积法判相交)
n = 30;四重循环暴力
排好序后我们知道对角线可能是 1-3和2-4,,也可能是 1-4和2-3,,只需判断对角线是否相交就可以判断是否为凸四边形
这里用叉积判是否相交:(下一篇博文用面积法判相交)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<set>
#include<stack>
#include<queue>
#include<algorithm>
// cout << " === " << endl;
using namespace std;
typedef long long ll;
const int maxn = 100 + 7, INF = 0x3f3f3f3f, mod = 1e9+7;
int T, n;
struct node {
int x, y;
}a[maxn];
bool cmp(node a_, node b_) {
if(a_.x == b_.x) return a_.y < b_.y;
return a_.x < b_.x;
}
void init() {
for(int i = 0; i < n; ++i)
scanf("%d%d", &a[i].x, &a[i].y);
sort(a, a+n, cmp);
}
bool inter(int a1, int a2, int a3, int a4) {
if( 1.0*((a[a1].x-a[a3].x)*(a[a4].y-a[a3].y)-(a[a1].y-a[a3].y)*(a[a4].x-a[a3].x))/10000.0 * 1.0*((a[a4].x-a[a3].x)*(a[a2].y-a[a3].y)-(a[a4].y-a[a3].y)*(a[a2].x-a[a3].x))/10000.0 < 0.0) return false;
if( 1.0*((a[a4].x-a[a1].x)*(a[a2].y-a[a1].y)-(a[a4].y-a[a1].y)*(a[a2].x-a[a1].x))/10000.0 * 1.0*((a[a2].x-a[a1].x)*(a[a3].y-a[a1].y)-(a[a2].y-a[a1].y)*(a[a3].x-a[a1].x))/10000.0 < 0.0) return false;
return true;
}
void solve() {
int cnt = 0;
for(int i = 0; i < n; ++i) {
for(int j = i+1; j < n; ++j) {
for(int k = j+1; k < n; ++k) {
for(int y = k+1; y < n; ++y) {
if(inter(i, k, j, y) || inter(i, y, j, k)) cnt++;
}
}
}
}
cout << cnt << endl;
}
int main() {
scanf("%d", &T);
int kase = 1;
while(T--) {
cin >> n;
init();
printf("Case %d: ", kase++);
solve();
}
return 0;
}