HRBUST - 1818 石子合并问题--直线版 区间DP入门

入门级区间DP问题(题目传送门:https://vjudge.net/problem/HRBUST-1818
题意:直线上的 n 堆石子,每次只能合并两堆相邻的石子,并记录他们的和 看做一次花费,求最小花费和最大花费

思路:
一个区间内的最小花费 dp [ i ] [ j ] = min ( dp [ i ] [ k ] + dp [ k + 1] [ j ] + sum( i, j ) );
因为最后一次花费肯定是整个区间的所有石子的和 即为 sum(i,j);
、、————————分割线————————–,,
还有一个合并类型的题是很多小木棍的合并,可以任意合并,那样就用到最优二叉树的算法,将在下篇博文中给出题目和题解

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<math.h>
#include<set>
#include<stack>
#include<queue>
#include<ctype.h>
#include<vector>
#include<algorithm>
// cout << "  ===  " << endl;

using namespace std;
typedef long long ll;
const int maxn = 100 + 7, INF = 0x3f3f3f3f, mod = 1e9+7;
int n;
int a[maxn], sum[maxn];
int dp1[maxn][maxn], dp2[maxn][maxn];

void init() {
    memset(dp1, 0, sizeof dp1);
    memset(dp2, 0, sizeof dp2);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
        sum[i] = sum[i-1] + a[i];
        dp1[i][i] = 0;
        dp2[i][i] = 0;
    }
}

int main() {
    while(scanf("%d", &n) != EOF && n) {
        init();
        for(int len = 1; len < n; ++len) {
            for(int i = 1; i+len <= n; ++i) {
            int j = i + len;
                dp1[i][j] = INF;
                for(int k = i; k < j; ++k) {
                    dp1[i][j] = min(dp1[i][j], dp1[i][k] + dp1[k+1][j] + sum[j] - sum[i-1]);
                    dp2[i][j] = max(dp2[i][j], dp2[i][k] + dp2[k+1][j] + sum[j] - sum[i-1]);
                }
            }
        }
        printf("%d %d\n", dp1[1][n], dp2[1][n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值