入门级区间DP问题(题目传送门:https://vjudge.net/problem/HRBUST-1818)
题意:直线上的 n 堆石子,每次只能合并两堆相邻的石子,并记录他们的和 看做一次花费,求最小花费和最大花费
思路:
一个区间内的最小花费 dp [ i ] [ j ] = min ( dp [ i ] [ k ] + dp [ k + 1] [ j ] + sum( i, j ) );
因为最后一次花费肯定是整个区间的所有石子的和 即为 sum(i,j);
、、————————分割线————————–,,
还有一个合并类型的题是很多小木棍的合并,可以任意合并,那样就用到最优二叉树的算法,将在下篇博文中给出题目和题解
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<math.h>
#include<set>
#include<stack>
#include<queue>
#include<ctype.h>
#include<vector>
#include<algorithm>
// cout << " === " << endl;
using namespace std;
typedef long long ll;
const int maxn = 100 + 7, INF = 0x3f3f3f3f, mod = 1e9+7;
int n;
int a[maxn], sum[maxn];
int dp1[maxn][maxn], dp2[maxn][maxn];
void init() {
memset(dp1, 0, sizeof dp1);
memset(dp2, 0, sizeof dp2);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
sum[i] = sum[i-1] + a[i];
dp1[i][i] = 0;
dp2[i][i] = 0;
}
}
int main() {
while(scanf("%d", &n) != EOF && n) {
init();
for(int len = 1; len < n; ++len) {
for(int i = 1; i+len <= n; ++i) {
int j = i + len;
dp1[i][j] = INF;
for(int k = i; k < j; ++k) {
dp1[i][j] = min(dp1[i][j], dp1[i][k] + dp1[k+1][j] + sum[j] - sum[i-1]);
dp2[i][j] = max(dp2[i][j], dp2[i][k] + dp2[k+1][j] + sum[j] - sum[i-1]);
}
}
}
printf("%d %d\n", dp1[1][n], dp2[1][n]);
}
return 0;
}